
Merge DICOM Toolkit™

5.16.0

C/C++ User’s Manual

© Copyright Merge Healthcare Solutions Inc. 2023.

Licensed materials - Property of Merge Healthcare Solutions Inc..
The content of this document is confidential information of Merge Healthcare Solutions Inc. and its use and disclosure is subject to
the terms of the agreement pursuant to which you obtained the software that accompanies the documentation.
Merge Healthcare and the Merge Healthcare logo are trademarks of Merge Healthcare Inc.
Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
All other names are trademarks or registered trademarks of their respective companies.

U.S. GOVERNMENT RESTRICTED RIGHTS:

This product is a “Commercial Item” offered with “Restricted Rights.” The Government's rights to use, modify, reproduce, release,
perform, display or disclose this documentation are subject to the restrictions set forth in Federal Acquisition Regulation (“FAR”)
12.211 and 12.212 for civilian agencies and in DFARS 227.7202-3 for military agencies. Contractor is Merge Healthcare Solutions Inc.

Symbols Glossary:

The full symbols glossary can be viewed at https://www.merative.com/content/dam/merative/documents/brief/
Merge_Healthcare_Symbols_Glossary.pdf.

For application support or to report issues with user documentation, contact Customer Support:

1-877-741-5369 (North America)
+31.20.514.5073 (Europe, the Middle East and Africa)
1800 316 746 (Australia)

MC3Support@merative.com

The latest version of this document can be found at https://mergecustomer.force.com/mergeusercommunity/login.

Symbol Title

Manufacturer

Consult Instructions for Use

Part Date Revision Description

COM-5280 January 2023 1.0 Updated bi-annually

Merge Healthcare Incorporated
900 Walnut Ridge Drive
Hartland, WI 53029
USA

mailto:mergesupport@merative.com
https://www.merative.com/content/dam/merative/documents/brief/
Merge_Healthcare_Symbols_Glossary.pdf
https://mergecustomer.force.com/mergeusercommunity/login
mailto: MC3Support@merative.com

Contents

3© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 1. Overview...7

1.1. The DICOM Standard ..7

1.2. The Merge DICOM Toolkit ...10

1.3. Development Platform Requirements.. 11

1.4. Library Structure .. 11

1.4.1. Header Files ...12

1.4.2. Merge DICOM Toolkit Library ..13

1.4.3. Binary Message Information and Data Dictionary Files ..13

1.4.4. Sample Applications ..14

1.4.5. Merge DICOM Toolkit Extended Toolkit ...14

1.5. Documentation Roadmap...15

1.6. Conventions ...15

Chapter 2. Understanding DICOM ...17

2.1. General Concepts..17

2.1.1. Application Entities ...17

2.1.2. Services and Meta Services ...17

2.1.3. DICOM Information Model...24

2.2. Networking... 25

2.2.1. Commands .. 25

2.2.2. Association Negotiation... 26

2.3. Messages .. 27

2.3.1. DICOM Data Dictionary..28

2.3.2. Message Handling.. 29

2.3.3. Private Attributes .. 30

2.4. Media Interchange ... 30

2.4.1. DICOM Files ...31

2.4.2. File Sets ... 37

2.4.3. DICOMDIR ...38

2.4.4. File Management Services and Roles ..40

2.5. Conformance...41

Chapter 3. Using Merge DICOM Toolkit..42

3.1. Configuration ..42

3.1.1. Initialization File ...42

© Copyright Merge Healthcare Solutions Inc. 2023 4

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual Contents

3.2. Message Logging ..43

3.3. Utility Programs ...44

3.3.1. mc3comp ...44

3.3.2. mc3conv..45

3.3.3. mc3echo ...46

3.3.4. mc3list..46

3.3.5. mc3valid ..47

3.3.6. mc3file..48

Chapter 4. Developing DICOM Applications ...51

4.1. Library Initialization ...51

4.2. Statically Linked Configuration .. 52

4.3. Registering Your Application .. 52

4.4. Association Management (Network Only) ... 53

4.5. Negotiated Transfer Syntaxes (Network Only)...57

4.6. Dynamic Service Lists ..59

4.7. Message Objects...60

4.7.1. Building Messages ..61

4.7.2. Parsing Messages...66

4.7.3. 8-bit Pixel Data ..71

4.7.4. Encapsulated Pixel Data...71

4.7.5. Icon Image Sequences .. 73

4.7.6. Validating Messages.. 73

4.7.7. Streaming Messages...80

4.8. Message Exchange (Network Only)..81

4.8.1. General..81

4.8.2. Asynchronous Communications ..84

4.9. Using Compression/Decompression Callback Functions..87

4.10. Using Callback Functions... 92

4.11. Sequences of Items...95

4.12. DICOM Files ..99

4.12.1. File System Interface Functions..99

4.12.2. Creating a File Object ... 100

4.12.3. Reading Files..101

4.12.4. Creating and Writing Files... 102

4.12.5. Other Useful File Object Functions ... 103

4.12.6. File Validation ...104

© Copyright Merge Healthcare Solutions Inc. 2023 5

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual Contents

4.12.7. Converting Files to/from Messages ..104

4.12.8. Saving Raw (Unparsed) Messages as DICOM Files .. 105

4.13. DICOMDIR ... 107

4.13.1. Structure ... 107

4.13.2. Opening and Navigation .. 107

4.13.3. Adding and Deleting Records..110

4.13.4. Storage of Directory Records ..110

4.14. Private Attributes ...110

4.15. Multi-threading Support... 111

4.16. Memory Management ...112

4.16.1. Assigning Pixel Data ...113

4.16.2. Reading Messages from the Network ...113

4.16.3. Loading Messages from Disk...114

4.16.4. Using Registered Callbacks..114

4.17. DICOM Structured Reporting..116

4.17.1. Structured Report Structure and Modules...116

4.17.2. Content Item Types ..118

4.17.3. Relationship Types between Content Items.. 120

4.17.4. Content Item Identifier..121

4.17.5. Observation Context ... 122

4.17.6. Structured Reporting Templates .. 122

4.17.7. Memory Management .. 126

4.17.8. Overview of the Merge DICOM Toolkit SR Functions... 127

4.17.9. Encoding SR Documents ... 128

4.17.10. Reading SR Documents.. 133

4.18. Unicode Support... 138

Chapter 5. Deploying Applications ..145

5.1. Merge DICOM Toolkit Required Files...145

5.2. Configuration Options ..145

5.2.1. Configuring Remote Nodes for SCU Applications...146

5.3. UN VR...147

Appendix A. Frequently Asked Questions...149

Appendix B. Unique Identifiers (UIDs)..154

B.1. Summary of UID Composition...154

B.2. Sample UID Format...154

B.3. Obtaining a UID..155

© Copyright Merge Healthcare Solutions Inc. 2023 6

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual Contents

B.3.1. Obtaining a UID from ANSI..155

Appendix C. XML and JSON Structures ...156

Appendix D. XML License ..164

Appendix E. JSON License..165

7© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 1. Overview

This User's Manual is intended for developers of medical imaging applications who are using the
Merge DICOM Toolkit to provide DICOM network or media functionality.

The Merge DICOM Toolkit supplies you with a powerful and simplified interface to DICOM. It lets
you focus on the important details of your application and the immediate needs of your end users,
rather than the complex and often confusing details of the DICOM Standard.

The goal of this manual is to give you basic understanding of DICOM, and a clear understanding of
the Merge DICOM Toolkit.

1.1. The DICOM Standard
The Digital Imaging and Communications in Medicine (DICOM) Standard was originally developed
by a joint committee of the American College of Radiology (ACR) and the National Electrical Manu-
facturers Association (NEMA) to, “facilitate the open exchange of information between digital imag-
ing computer systems in medical environments.” 1

1 NEMA Standards Publication No. PS 3.5-1993; DICOM Part 5 - Data Structures and Encoding, p.4.

Since its initial completion in 1993, the standard has taken hold. More and more products are
advertising DICOM conformance, and more customers are requiring it. DICOM has also been
incorporated as part of a developing European standard by CEN, as a Japanese standard by JIRA,
and is increasingly becoming an international standard.

The DICOM Standard 2011 edition is composed of thousands of pages over 18 separate parts (parts
9 and 13 have been retired). Each part of the standard focuses on a different aspect of the DICOM
protocol:

● Part 1: Introduction and Overview

● Part 2: Conformance

● Part 3: Information Object Definitions

● Part 4: Service Class Specifications

● Part 5: Data Structures and Encoding

● Part 6: Data Dictionary

● Part 7: Message Exchange

● Part 8: Network Communication Support for Message Exchange

● Part 9: Point-to-Point Communication Support for Message Exchange (retired)

● Part 10: Common Media Storage Functions for Data Interchange

● Part 11: Media Storage Application Profiles

● Part 12: Media Formats and Physical Media for Data Interchange

● Part 13: Print Management Point-to-Point Communication Support (retired)

● Part 14: Grayscale Standard Display Function

● Part 15: Security Profiles

● Part 16: DICOM Content Mapping Resource

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

8© Copyright Merge Healthcare Solutions Inc. 2023

● Part 17: Explanatory Information

● Part 18: Web Services

● Part 19: Application Hosting

● Part 20: Transformation of DICOM to and from HL7 Standards

● Part 21: Transformations between DICOM and other Representations

● Part 22: Real-Time Communication

A Quick Walk Through DICOM

Part 1 of the standard gives an overview of the standard. Since this part was approved before most
of the other parts were completed, it is already somewhat outdated and can be confusing.

Part 2 describes DICOM conformance and how to write a conformance statement. A conformance
statement is important because it allows a network administrator to plan or coordinate a network of
DICOM applications. For an application to claim DICOM conformance, it must have an accurate
conformance statement.

Parts 3 and 4 define the types of services and information that can be exchanged using DICOM.

Parts 5 and 6 describe how commands and data shall be encoded so that decoding devices can
interpret them.

Part 7 describes the structure of the DICOM commands that, along with related data, make up a
DICOM message. This part also describes the association negotiation process, where two DICOM
applications mutually agree on the services they will perform over the network.

Part 8 describes how the DICOM messages are exchanged over the network using two prominent
transport layer protocols: TCP/IP and OSI. (Note that IPv4 and IPv6 are supported by DICOM and
by Merge DICOM Toolkit.) This is termed the DICOM Upper Layer Protocol (DICOM UL).

Part 9 describes how DICOM messages shall be exchanged using the 'old' 50-pin point-to-point
connection originally specified in the predecessor to DICOM (ACR/NEMA Version 2). This part has
been retired from the DICOM standard.

Part 10 describes the DICOM model for the storage of medical imaging information on removable
media. It specifies the contents of a DICOM File Set, the format of a DICOM File and the policies
associated with the maintenance of a DICOM Media Storage Directory (DICOMDIR) structure.

Part 11 specifies the Media Storage Application Profiles that standardize a number of choices
related to a specific clinical need (modality or application). This includes the specification of a spe-
cific physical medium and media format (e.g., CD-ROM, 3.5" high-density floppy, …), as well as the
types of information (objects) that can be stored within the DICOM File Set. Part 11 also includes
useful templates to provide guidance in authoring media application conformance statements.

Part 12 details the characteristics of various physical medium and media formats that are refer-
enced by the Media Storage Application Profiles of Part 11.

While parts 11 and 12 of DICOM are expected to evolve along with the introduction of new clinical
procedures and the advancement of storage media and file system technology, Part 10 should
remain quite stable since it specifies file formats independent of medical application or storage
technology.

Part 13 details a point-to-point protocol for doing print management services. This part has been
retired from the DICOM standard.

Part 14 specifies a standardized display function for displaying grayscale images.

Part 15 specifies Security Profiles to which implementations may claim conformance. Profiles are
defined for secure network transfers and secure media.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

9© Copyright Merge Healthcare Solutions Inc. 2023

Part 16 specifies the DICOM Content Mapping Resource (DCMR) which defines the templates and
context groups used elsewhere in the standard.

Part 17 consolidates informative information previously contained in other parts of the standard. It
is composed of several annexes describing the use of the standard.

Part 18 specifies a web-based service for accessing and presenting DICOM persistent objects (e.g.
images, medical imaging reports).

Part 19 defines an API such that a 'plug-in' Hosted Application written to the API would be able run
in any environment provided by a Hosting System implementing the API.

Part 20 specifies transformations of DICOM data to and from HL7 standards.

Part 21 specifies the transformations between DICOM and other representations of the same infor-
mation.

Part 22 specifies an SMPTE ST 2110-10 based service, relying on RTP, for the real-time transport of
DICOM metadata. It provides a mechanism for the transport of DICOM metadata associated with a
video or an audio flow based on the SMPTE ST 2110-20 and SMPTE ST 2110-30, respectively.

The following diagram of the DICOM Protocol Stack maps portions of the DICOM Standard dealing
with networking to the ISO Open Systems Interconnection (OSI) basic reference model. The organi-
zation and terminology of the DICOM Standard corresponds closely with that used in the OSI Stan-
dard.

Where to get the DICOM Standard

As a user of this toolkit, you should have access to the DICOM Standard. The Merge DICOM Toolkit
takes care of most of the details of DICOM for you. However, the standard is the final word. You will
probably find Parts 2 - 6 most useful. The DICOM Standard can be ordered from:

NEMA
1300 N. 17th Street
Suite 1847
Rosslyn, VA 22209
USA

http://medical.nema.org

The DICOM Standard is typically published every other year. Each version includes approved
changes since the last publishing. The most recent version of the standard is available in PDF for-

http://medical.nema.org

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

10© Copyright Merge Healthcare Solutions Inc. 2023

mat and can be downloaded from NEMA's public ftp site at:
https://www.dicomstandard.org/

NOTE: The DICOM Standard is evolving so rapidly that additions to the Standard are published as
'supplements'. For example, the media extensions have been incorporated into the DICOM
Standard as a supplement that contains addenda to various parts of the standard (e.g.,
PS3.3, PS3.4, …). If you find that this document references a part of the Standard which you
cannot find, obtain the proper supplement from NEMA. Other additions to the Standard
(for example, new image objects or documents) are also published as supplements. NEMA
also makes all supplements to the standard freely available on their FTP server. You can ref-
erence these supplements at:
ftp://medical.nema.org/medical/Dicom/Final/.

1.2. The Merge DICOM Toolkit
The Merge DICOM Toolkit provides a generalized implementation of DICOM in an ANSI-C Function
Library which you can link with your application. You make simple function calls to open connec-
tions with other DICOM devices on a network, and to build and exchange DICOM messages or
DICOM files.

The following diagram of the DICOM Application Layer presents a pictorial representation of a
DICOM Application Entity. The Merge DICOM Toolkit implements Parts 5, 6, 7, 8, and 10 of the
DICOM Standard. It also makes it much easier for your application to implement according to Parts
3 and 4 by supplying many tools for the management of DICOM messages, and to Part 12 by supply-
ing 'hooks' to your application's underlying file system.

The DICOM Toolkit also supplies useful utility programs for testing a DICOM network connection,
creating sample DICOM messages and writing them to a file, and validating and listing the contents
of DICOM messages.

Finally, sample application manuals (Image Transfer, Query/Retrieve, Printing, Media Storage, Work-
list Management, etc.) along with sample working source code give you practical examples to work
from when developing your own DICOM applications.

ftp://medical.nema.org/medical/Dicom/Final/
https://www.dicomstandard.org/

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

11© Copyright Merge Healthcare Solutions Inc. 2023

The DICOM Standard and the Merge DICOM Toolkit allow applications to add private information to
a DICOM message or file. For most application developers, this is more than sufficient. For applica-
tions that need to define their own non-standard private network or file services, an optional Merge
DICOM Toolkit Extended Toolkit is available.

1.3. Development Platform Requirements
To use the Merge DICOM Toolkit Library, you must run on a toolkit supported computing platform.
The Toolkit was designed to be portable and is available for many platforms (e.g., Sun Solaris 8
Sparc, Sun Solaris 10 Intel, Linux, Windows XP/Vista/7/8, MacOS X, Android). If it is not currently
available for your target platform, please contact Merge Healthcare. We may already be working on
the port.

Once on a supported platform, you will need an ANSI-C compiler along with the Standard C Librar-
ies. You will also need a Berkeley Sockets or WinSock (for Windows 2000/2003/XP) Library for
interfacing to TCP/IP and a linker to link your application with the libraries. In the case of the MacOS
version of the toolkit no additional socket libraries are needed.

Your development environment (or at a minimum your target environment) should run on a
machine with a network interface over which you can run the TCP/IP protocol. The DICOM Toolkit
library supplies you with the DICOM protocol that runs on top of TCP/IP.

If your application will write DICOM files to interchangeable media, you will need a device driver for
the media storage device and a programming interface between your operating system and the file
system on that device.

More specific requirements can be found in the Platform Notes pamphlet specific to a platform.
This could include supported OS versions, supported compilers and linkers, and required com-
piler/build options.

1.4. Library Structure
Understanding the organization and components of the Merge DICOM Toolkit Library is important
to developing an efficient and capable DICOM application (see the Merge DICOM Toolkit Library
Organization diagram below). Following is a description of the header files that must be included
within your application, and a description of the library's structure and the external components it
uses at runtime to provide DICOM functionality.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

12© Copyright Merge Healthcare Solutions Inc. 2023

1.4.1. Header Files

Your applications interface to the DICOM Toolkit Library is described in five supplied header files:

● mergecom.h

● mc3msg.h

● mc3media.h

● mcstatus.h

● diction.h

The mergecom.h header file contains the prototypes of the functions used to register your applica-
tion with the toolkit library and manage associations with other DICOM AE's over the network.
mc3msg.h specifies the message object functions that allow you to populate or parse a message
and supply you with powerful message validation features. mc3media.h contains the functions
used to create and maintain DICOM files and the DICOMDIR directory of a DICOM file set. mcsta-
tus.h specifies functions that allow your application to interpret the status codes returned from
DICOM Toolkit calls. Finally, diction.h supplies useful #defines with descriptive names for all
the DICOM Tags you might refer to in your applications.

Your application must #include these header files to make use of the appropriate toolkit library
functionality.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

13© Copyright Merge Healthcare Solutions Inc. 2023

1.4.2. Merge DICOM Toolkit Library

The Merge DICOM Toolkit Library (usually named mc3adv.a or mc3adv.lib) is the object code
library for your computing platform that you link into your DICOM application. This library services
your calls to the DICOM Toolkit. In the process of servicing networking calls, the DICOM Toolkit
requires the services of a Berkeley Sockets (or WinSock) Library for your platform. If you are per-
forming any DICOM network operations, this sockets library must also be linked with your applica-
tion. Finally, if you are using the library to maintain a DICOM file set, you may need a special-purpose
library to interface with your media storage device.

The Merge DICOM Toolkit library has been carefully designed to be re-entrant and has been vali-
dated to be thread-safe on several multi-threading capable platforms. Note, however, that with only
a few exceptions, Merge DICOM Toolkit assumes that objects are only accessed from one thread at
a time. For instance, Merge DICOM Toolkit assumes that only a single thread will manipulate a mes-
sage object at one time. Check the Platform Notes to see if a platform supports multi-threading.

Shared libraries or dynamic link libraries (DLL's) are normally supplied by Merge DICOM Toolkit for
platforms which support them.

When a Merge DICOM Toolkit Application is first run, it reads in its configuration files; usually named
merge.ini, mergecom.app, mergecom.pro, and mergecom.srv. Toolkit configuration is
described later in this document and is detailed further in the Merge DICOM Toolkit Reference
Manual. Usually, it is desirable to keep these configurable parameters in ASCII files for easy modifi-
cation. When modifying your configuration files, your application must be re-run for those changes
to take effect.

In cases where the toolkit configuration is unlikely to be changed or it is desirable to make these
changes within the running application, the toolkit configuration can be compiled into your applica-
tion. Most configurable parameters can be dynamically modified and reset within your running
application.

1.4.3. Binary Message Information and Data Dictionary Files

A great deal of the power of Merge DICOM Toolkit lies in its message handling and message valida-
tion capabilities. Message Objects are what is communicated between DICOM Application Entities.
When your application creates a DICOM message object, the library accesses a binary message
info file with information about that class of message. This info file describes to the library what attri-
butes to expect as part of that message and each attribute's characteristics (Value Type, Conditions,
and Enumerated or Defined Terms).

Another binary file containing the data dictionary is also accessed by the library. The data dictionary
contains other characteristics of attributes (Name, Value Representation, and Value Multiplicity).

Performance Tuning

Merge DICOM Toolkit gives you added flexibility, by not requiring your application to make use of the
message info file. Certain API calls allow you to open messages without accessing the info files. This
means that the toolkit cannot validate your message against the DICOM standard, but this may not
always be necessary once an application becomes stable. These options are discussed in greater
detail in the Developing DICOM Applications section of this document.

Two specialized classes (subclasses) of message objects are also supported by the DICOM Toolkit
Library: items and files. Items are DICOM 'sub-messages' that can be stored in a DICOM message
within a sequence of items. DICOM files are specialized DICOM messages that contain additional
file meta-information and are written to or read from interchangeable media rather than transmit-
ted or received over a network. Most Merge DICOM Toolkit API calls dealing with message objects
can also operate on items and files (these calls would be called polymorphic in object-oriented par-

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

14© Copyright Merge Healthcare Solutions Inc. 2023

lance). DICOM messages, items, and files will be described in much greater detail later in this docu-
ment.

1.4.4. Sample Applications

Included with the toolkit are sample applications in ANSI-C source code form and a Makefile that
compiles and links the sample applications with the toolkit library. Sample client and server applica-
tions are supplied for Storage, Query/Retrieve, and Print services. Also, a compression sample and
DICOM File Service application are provided.

Before writing your own applications, you should read the corresponding Sample Application
Guides and look at the sample source. The guides also include a DICOM conformance statement
for the example application. While these sample applications are primitive in features and user
interface, they illustrate how to use the DICOM Toolkit API to perform DICOM services over a net-
work.

NOTE: The sample applications and application guides can be helpful.

1.4.5. Merge DICOM Toolkit Extended Toolkit

Merge Healthcare has a DICOM Database Management System in which the DICOM standard is
maintained. This database, along with a few additional tools, is used to generate the binary message
info and dictionary files accessed by the DICOM Toolkit. As the DICOM standard is updated or
extended, by simply maintaining this database, we can generate new binary files and keep the tool-
kit current. This also reduces the number of changes that must be made in the core DICOM Toolkit
library over time.

The extended version of this toolkit makes some of these tools available to application developers
who need to significantly extend the standard with private attribute and private service definitions.
The files for the extended version are packaged with the standard toolkit. The extended version
supplies you with an ASCII file database of the standard that you can extend, along with executables
for your platform that translate these ASCII files to the binary message info and data dictionary files
used by the toolkit at run time. In this way, you can extend the toolkit to validate your own private
attributes and services.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

15© Copyright Merge Healthcare Solutions Inc. 2023

1.5. Documentation Roadmap
The Merge DICOM Toolkit documentation is structured as shown in the Merge DICOM Toolkit Doc-
umentation Roadmap diagram below.

The User's Manual is the foundation for all other documentation because it explains the concepts of
DICOM and the DICOM Toolkit. Before plunging into the Merge DICOM Toolkit Reference Manual or
Sample Application Guide, you should be comfortable with the material in the User Manual.

NOTE: It is recommended that you read the User’s Manual (this document) first.

The Merge DICOM Toolkit Reference Manual is where you go for detailed information on the
DICOM Toolkit. This includes the Application Programming Interface (API), toolkit configuration,
the runtime object database, and status logging. The DICOM Message Database Manual is an
optional extension that describes the organization of the Merge DICOM Toolkit DICOM Database
and how to use it to extend standard services and define your own private services. Tools are sup-
plied for converting the contents of the database into the binary runtime object database.

Sample Applications

The Sample Application Guide describes approaches to developing specific classes of DICOM
applications (Image Transfer, Query/Retrieve, Print, HIS/RIS, Storage Media, etc.). It highlights per-
tinent information from Parts 3 or 4 of the DICOM Standard in a more readable way and in the con-
text of the DICOM Toolkit. The Application Guide also details the DICOM messages that can be
passed between applications on the network. Also, a sample application is described, and the appli-
cation supplied in source form for your platform.

Platform-specific information required to use the DICOM Toolkit on your target platform are speci-
fied in Platform Notes. This includes supported compilers, compiler options, link options, configu-
ration, and run-time related issues.

1.6. Conventions
This manual follows a few formatting conventions.

Terms that are being defined are presented in boldface.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

16© Copyright Merge Healthcare Solutions Inc. 2023

Sample commands appear in bold courier font, while sample output, source code, and func-
tion calls appear in standard courier font.

Hexadecimal numbers are written with a trailing H. For example, 16 decimal is equivalent to 10H
hexadecimal.

17© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 2. Understanding DICOM

The eighteen separate parts of the DICOM Standard can seem overwhelming, and most would
agree that they are difficult to read. Part of what makes a successful standard is precision and
detail. Our goal here is to explain the key concepts without delving too far into the detail, most of
which is handled automatically for you by the DICOM Toolkit.

2.1. General Concepts
Some key concepts that must be understood to use the DICOM Toolkit wisely are common across
both DICOM networking and interchangeable media applications. These concepts are discussed
first.

2.1.1. Application Entities

The DICOM Standard refers extensively to Application Entities (AEs). An application entity is sim-
ply a DICOM application. If your application interacts with other applications on a network or with
interchangeable media using the DICOM protocol, it is an application entity.

Client/Server

DICOM also refers to Service Class Users (SCUs) and Service Class Providers (SCPs). An appli-
cation entity is an SCU when it requests DICOM services over a network and an SCP when it pro-
vides DICOM services over a network. We will more often refer to the SCU as a Client and the SCP
as a Server. A single DICOM application entity can act as both a client and a server. This client/
server model is a powerful and omnipresent one in the world of distributed network computing.

2.1.2. Services and Meta Services

DICOM is formed around the concepts of Services and Service Classes. The DICOM Standard
specifies a set of services that can be performed over a network. Some of the services can also be
stored to interchangeable media (these are italicized in the 2.1.3. DICOM INFORMATION MODEL ON
PAGE 24). As new services are introduced, the standard will be further expanded. The standard also
groups related services into a service class. The table below lists the DICOM standard service
classes and their component services.2

2The DICOM Standard actually refers to services as Service Object Pairs (SOPs) and meta services
as Meta-SOPs. We avoid this terminology to avoid unnecessary detail and confusion.

When a particular collection of services in a service class implies a higher level of service, this col-
lection is combined by the standard into a Meta Service. Specifying that your application supports
a specific meta service is a useful shorthand for explicitly listing out the collection of services that
make up that meta service.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

18© Copyright Merge Healthcare Solutions Inc. 2023

Table 2.1: DICOM Services Classes and their Component Services

Service Class Services Description

Verification Verification Verifies application level
communication between
DICOM application enti-
ties (AE's).

Storage 12-lead ECG Waveform
Acquisition Context SR
Advanced Blending Presentation State
Ambulatory ECG Waveform
Arterial Pulse Waveform
Audio Waveform Real-Time Communication
Autorefraction Measurements
Basic Structured Display
Basic Text SR
Basic Voice Audio Waveform
Blending Softcopy Presentation State
Body Position Waveform
Breast Projection X-Ray Image - For Presentation
Breast Projection X-Ray Image - For Processing
Breast Tomosynthesis Image
C-Arm Photon Electron Radiation Record
C-Arm Photon-Electron Radiation
Cardiac Electrophysiology Waveform
Chest CAD SR
Colon CAD SR
Color Palette
Color Softcopy Presentation State
Compositing Planar MPR Volumetric Presentation
State
Comprehensive SR
Comprehensive 3D SR
Computed Radiography Image
Content Assessment Results
Corneal Topography Map
CT Defined Procedure Protocol
CT Image
CT Performed Procedure Protocol
Deformable Spatial Registration
Dermoscopic Photography Image
Digital Intra-oral X-Ray Image - For Presentation
Digital Intra-oral X-Ray Image - For Processing
Digital Mammography Image - For Presentation
Digital Mammography Image - For Processing

Transfer of medical
images and related stand-
alone data between
DICOM application enti-
ties, either over a network
or using interchangeable
media.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

19© Copyright Merge Healthcare Solutions Inc. 2023

Digital X-Ray Image - For Presentation
Digital X-Ray Image - For Processing
Electromyogram Waveform
Electrooculogram Waveform
Encapsulated CDA
Encapsulated MTL
Encapsulated OBJ
Encapsulated PDF
Encapsulated STL
Enhanced CT Image
Enhanced MR Color Image
Enhanced MR Image
Enhanced PET Image
Enhanced SR
Enhanced US Volume
Enhanced X-Ray Radiation Dose SR
Enhanced XA Image
Enhanced XRF Image
Extensible SR
General Audio Waveform
General ECG Waveform
Generic Implant Template
Grayscale Planar MPR Volumetric Presentation State
Grayscale Softcopy Presentation State
Hanging Protocol
Hardcopy Color Image
Hardcopy Grayscale Image
Hemodynamic Waveform
Implant Assembly Template
Implant Template Group
Implantation Plan SR Document
Intraocular Lens Calculations
Intravascular Optical Coherence Tomography Image -
For Presentation
Intravascular Optical Coherence Tomography Image -
For Processing
Inventory
Keratometry Measurements
Key Object Selection Document
Legacy Converted Enhanced CT Image
Legacy Converted Enhanced MR Image
Legacy Converted Enhanced PET Image
Lensometry Measurements
Macular Grid Thickness and Volume Report
Mammography CAD SR

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

20© Copyright Merge Healthcare Solutions Inc. 2023

Microscopy Bulk Simple Annotations
MR Image
MR Spectroscopy
Multi-channel Respiratory Waveform
Multi-frame Grayscale Byte Secondary Capture Image
Multi-frame Grayscale Word Secondary Capture Image
Multi-frame Single Bit Secondary Capture Image
Multi-frame True Color Secondary Capture Image
Multiple Volume Rendering Volumetric Presentation
State
Nuclear Medicine Image
Ophthalmic 16 bit Photography Image
Ophthalmic 8 bit Photography Image
Ophthalmic Axial Measurements
Ophthalmic Optical Coherence Tomography B-scan
Volume Analysis
Ophthalmic Optical Coherence Tomography En Face
Image
Ophthalmic Thickness Map
Ophthalmic Tomography Image
Ophthalmic Visual Field Static Perimetry Measurments
Parametric Map
Patient Radiation Dose SR
Performed Imaging Agent Administration SR
Planned Imaging Agent Administration SR
Positron Emission Tomography Image
Procedure Log
Protocol Approval
Pseudo-Color Softcopy Presentation State
Radiopharmaceutical Radiation Dose SR
Raw Data
Real World Value Mapping
Rendition Selection Document Real-Time
Communication
Respiratory Waveform
Robotic-Arm Radiation
Robotic-Arm Radiation Record
Routine Scalp Electroencephalogram Waveform
RT Beams Delivery Instruction
RT Beams Treatment Record
RT Brachy Application Setup Delivery Instruction
RT Brachy Treatment Record
RT Dose
RT Image
RT Ion Beams Treatment Record

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

21© Copyright Merge Healthcare Solutions Inc. 2023

RT Ion Plan
RT Physician Intent
RT Plan
RT Radiation Record Set
RT Radiation Salvage Record
RT Radiation Set Delivery Instruction
RT Radiation Set
RT Segment Annotation
RT Structure Set
RT Treatment Preparation
RT Treatment Summary Record
Secondary Capture Image
Segmentation
Segmented Volume Rendering Volumetric Presentation
State
Simplified Adult Echo SR
Sleep Electroencephalogram Waveform
Spatial Fiducials
Spatial Registration
Spectacle Prescription Report
Standalone Curve
Standalone Modality LUT
Standalone Overlay
Standalone PET Curve
Standalone VOI LUT
Stereometric Relationship
Stored Print
Subjective Refraction Measurements
Surface Scan Mesh
Surface Scan Point Cloud
Surface Segmentation
Tomotherapeutic Radiation Record
Tomotherapeutic Radiation
Tractography Results
Ultrasound Image
Ultrasound Multi-Frame Image
Video Endoscopic Image
Video Endoscopic Image Real-Time Communication
Video Microscopic Image
Video Photographic Image
Video Photographic Image Real-Time Communication
Visual Acuity Measurements
VL Endoscopic Image
VL Microscopic Image
VL Photographic Image

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

22© Copyright Merge Healthcare Solutions Inc. 2023

VL Slide-Coordinates Microscopic Image
VL Whole Slide Microscopy Image
Volume Rendering Volumetric Presentation State
Wide Field Ophthalmic Photography 3D Coordinates
Image
Wide Field Ophthalmic Photography Stereographic
Projection Image
X-Ray 3D Angiographic Image
X-Ray 3D Craniofacial Image
X-Ray Angiographic Image
X-Ray Angiographic Bi-Plane Image
X-Ray Radiation Dose SRX-Ray Radiofluoroscopic
Image
XA/XRF Grayscale Softcopy Presentation State
XA Defined Procedure Protocol
XA Performed Procedure Protocol

Storage
Commitment

Storage Commitment Push
Storage Commitment Pull

Ensures that SOP
Instances stored with the
storage service class will
not be deleted after recep-
tion but will be stored
safely and can be retrieved
again at a later point.

Storage
Management

Inventory Creation An application-level class-
of-service that facilitates
peer-to-peer controls for
management of per-
sistent storage of Com-
posite SOP Instances.

Media Storage DICOM Basic Directory Storage and storage of various
(italicized) services from the other Service Classes

Exists as a member of
every DICOM File Set and
contains general informa-
tion about the file set and
a hierarchical directory of
the DICOM files contained
in the file set.

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

23© Copyright Merge Healthcare Solutions Inc. 2023

Query/Retrieve Defined Procedure Protocol Information Model Find
Defined Procedure Protocol Information Model Move
Defined Procedure Protocol Information Model Get
Inventory Find
Inventory Get
Inventory Move
Patient Root Find
Patient Root Move
Patient Root Get
Patient/Study Only Find (Retired)
Patient/Study Only Move (Retired)
Patient/Study Only Get (Retired)
Protocol Approval Information Model Find
Protocol Approval Information Model Move
Protocol Approval Information Model Get
Repository Query
Study Root Find
Study Root Move
Study Root Get

Management of images
through a query and
retrieval mechanism
based on a small number
of key attributes.

Basic Worklist
Management

Modality Worklist Find Supports the exchange of
any type of worklist from
one AE to another.

Print Management Basic Film Session
Basic Film Box
Basic Grayscale Image Box
Basic Color Image Box
Printer
Printer Configuration
Print Queue Management
Pull Print Request
Printer Referenced Image Box
VOI LUT Box
Presentation LUT
Basic Annotation Box

Printing (or filming) of
medical images and image
related data on a hard
copy medium. Also, stor-
age of print related data to
interchangeable media.

Basic Print Image Overlay Box SOP Class
Print Job
Image Overlay Retired
Basic Grayscale Print Mgmt. Meta
Basic Color Print Mgmt. Meta
Pull Stored Print Mgmt. Meta
Ref. Grayscale Print Mgmt. Meta
Ref. Color Print Mgmt. Meta

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

24© Copyright Merge Healthcare Solutions Inc. 2023

2.1.3. DICOM Information Model

The DICOM Standard includes the specification of a DICOM Information Model. A detailed entity-
relationship diagram of this model is included in both parts 3 and 4 of the standard. This model
specifies the relationship between the different types of objects (also called entities) managed in
DICOM. For example, a Patient has one or more Studies, each of which are composed of one or
more Series and zero or more Results, etc.

Objects vs. Object Instances

Most of DICOM's services perform actions on or with object instances3. An object can be thought
of as a class of data (CT Image, Film Box, etc.) while an object instance is an actual occurrence of an
object (a particular CT Image, a populated Film Box, etc.).

3object instances are referred to as SOP Instances or managed SOPs in the DICOM standard.

Normalized vs. Composite

There are two types of objects (and hence, object instances) defined in DICOM. Normalized
objects are objects consisting of a single entity in the DICOM information model (e.g., a Film Box).
Composite objects are composed of several related entities (e.g., an MR Image). When possible, it
is preferable to deal with normalized object instances over the network, because they contain less
redundant data and can be more efficiently managed by an application.

Most services inherited from the ACR/NEMA Version 2.x Standard are composite services (oper-
ate on composite object instances) for reasons of backward compatibility. Newly introduced ser-
vices, such as the HIS/RIS and Print Management Services, tend to be normalized services
(operate on normalized object instances).

Study Content
Notification

Basic Study Content Notification Allows one DICOM AE to
notify another DICOM AE
of the existence, contents,
and source location of the
images of a study.

Patient Manage-
ment

Detached Patient Management
Detached Visit Management
Detached Patient Mgmt. Meta

Creation and tracking of
the subset of patient and
patient visit information
that is required to aid in
the management of radio-
graphic studies.

Study Manage-
ment

Detached Study Management
Study Component Management
Modality Performed Procedure Step
Modality Performed Procedure Step Notification
Modality Performed Procedure Step Retrieve

Creation, scheduling, per-
formance, and tracking of
imaging studies.

Results Manage-
ment

Detached Results Management
Detached Interpretation Management
Detached Results Mgmt. Meta

Creation and tracking of
results and associated
diagnostic interpretations.

Service Class Services Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

25© Copyright Merge Healthcare Solutions Inc. 2023

2.2. Networking
Certain aspects of DICOM only apply to networking when using the DICOM Toolkit. This includes
networking commands and association negotiation.

2.2.1. Commands

DICOM defines a set of networking commands4. Each service uses a subset of these DICOM com-
mands to perform the service over a network. These commands usually act on object instances.
The C-commands operate on composite object instances, while the N-commands operate on nor-
malized object instances.

4commands are referred to as DIMSE Services in the DICOM Standard.

The DICOM commands and brief descriptions of their actions are listed in the table below.

Table 2.2: DICOM Commands

These DICOM commands can be thought of as primitives that every networking service is built
from. In the context of a particular Service, these primitive actions translate to explicit real-world
activities on the part of an Application Entity. Hence, DICOM places requirements on an application
implementing a DICOM service. DICOM is careful to only express high-level operational require-
ments and leaves the creative details and the look and feel of the application entity to the developer.

Request vs. Response

For every command, there is both a request and a response. A command request indicates that a
command should be performed and is usually sent to an SCP. A command response indicates
whether a command completed or its state of completion and is usually returned to an SCU. Exam-

DICOM Commands Description

C-STORE Transfer an object instance to a remote AE.

C-GET Retrieve from a remote AE object instance(s) whose attributes match a speci-
fied set of attributes.

C-MOVE Move object instance(s) whose attributes match a specified set of attributes
from a remote AE to yet another remote AE (or possibly your own AE - which
would be another form of retrieval).

C-FIND Match a set of attributes to the attributes of a set of object instances on a
remote AE.

C-ECHO Verify end-to-end communications with a remote AE.

N-EVENT-REPORT Report an event to a remote AE.

N-GET Retrieve attribute values from a remote AE.

N-SET Request modification of attribute on a remote AE.

N-ACTION Request an action by a remote AE.

N-CREATE Request that a remote AE create a new object instance.

N-DELETE Request that a remote AE delete an existing object instance.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

26© Copyright Merge Healthcare Solutions Inc. 2023

ple request commands are C STORE-RQ, N-GET-RQ, and N-SET-RQ. Example response com-
mands are C STORE-RSP, N-GET-RSP, and N-SET-RSP.

NOTE: It is important to note that this service definition level is where the Merge DICOM Toolkit
Library leaves off, and your Application begins. While Merge DICOM Toolkit supplies sample
application guides and running sample application source code for your platform, they are
only supplied as an example. They clearly explain the requirements that implementing cer-
tain DICOM services places on your application and provide worthwhile but primitive exam-
ples of how to approach your application with the toolkit. While you will see that the toolkit
saves you a great deal of 'DICOM work', it does not implement your end application for you.

2.2.2. Association Negotiation

One of the two areas where Merge DICOM Toolkit does a great deal of the 'DICOM work' for you is in
opening an association (session) with another DICOM AE over the network. DICOM application
entities need to agree on certain things before they operate with one another (open an association);
these include:

● the services that can be performed between the two devices, which also impacts the com-
mands and object instances that can be exchanged.

● the transfer syntax that shall be used in the network communication. The transfer syntax
defines how the commands and object instances are encoded 'on the wire'.

The exchange of DICOM commands and object instances can only occur over an open association.

DICOM defines an association negotiation protocol (see the Successful DICOM Association dia-
gram below). In the most common DICOM services, a client application entity (SCU) proposes an
association with a server AE (SCP). However, some services define a mechanism where the client
can be the SCP which opens an association with the SCU. This is used when an SCP sends asyn-
chronous event reports to an SCU through the N EVENT REPORT command. This is done through
DICOM role negotiation, which is used during standard association negotiation. For the sake of sim-
plicity, the remainder of this manual refers to the client as the SCU and the server as the SCP.

The association request proposal contains the set of services the client would like to perform and
the transfer syntaxes it understands. The server then responds to the client with a subset of the ser-
vices and transfer syntaxes proposed by the client. If this subset is empty, the server has rejected
the association. If the subset is not empty, the server has accepted the association and the agreed
upon services may be performed.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

27© Copyright Merge Healthcare Solutions Inc. 2023

The client is responsible for releasing the association when it is finished performing its network
operations. Either the client or the server can abort the association in the case of some catastrophic
failure (for example, disk full, out of memory).

2.3. Messages
Service-Command Pair

Once an association is established, services are performed by AEs through the exchange of DICOM
Messages. A message is the combination of a DICOM command request or response and its asso-
ciated object instance (see the DICOM message below). Messages containing command requests
will be referred to as request messages, while messages containing command responses will be
referred to as response messages.

When a DICOM service is stored to interchangeable media in a DICOM File, the structure of a
DICOM File is a slightly specialized class of DICOM message. Media interchange is discussed in
detail later; the only important thing to realize for now is that much of what is discussed relating to
DICOM Messages also applies to DICOM Files.

DICOM specifies the required message structure for each service-command pair. For example,
the Patient Root Find - C-FIND-RQ service-command pair has a specific message structure. The
command portion of a message is specified in Part 7 of the standard, while the object instance por-
tion is specified in Parts 3 and 4.

Attributes, Values and Tags

A message is constructed of attributes having values, with each attribute identified by a tag. An
attribute is a unit of data (e.g., Patient's Name, Scheduled Discharge Date, ...). A tag is a 4 byte num-
ber identifying an attribute (e.g., 00100010H for Patient's Name, 0038001CH for Scheduled Dis-
charge Date, ...).

Groups and Elements

A tag is usually written as an ordered pair of two byte numbers. The first two bytes are sometimes
called a group number, with the last two bytes being called an element number (e.g., (0010, 0010),
(0038, 001C), ...). This terminology is partly a remnant of the ACR-NEMA Standard where elements
within a group were related in some manner. This can no longer be depended on in DICOM, but the
ordered pair notation is still useful and often easier to read.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

28© Copyright Merge Healthcare Solutions Inc. 2023

Also, the ordered pair notation is important when defining a Tag for a private attribute. We will see
later that all private attributes must have an odd group number.

2.3.1. DICOM Data Dictionary

Attributes have certain characteristics that apply to them no matter what message they are used in.
These characteristics are specified in the DICOM Data Dictionary (Part 6 of DICOM) and are Value
Representation (VR) and Value Multiplicity (VM).

Value Representation can be thought of as the 'type specifier' for the values that can be assigned to
an attribute. This includes the data type, as well as its format. The VRs defined by DICOM are listed
in the table below. You should refer to Part 5 of the standard for a detailed description of their
allowed values and formats.

Table 2.3: DICOM Value Representations (VR's)

VR Name VR Name

AE Application Entity OW Other Word

AS Age String PN Person Name

AT Attribute Tag SH Short String

CS Code String SL Signed Long

DA Date SQ Sequence of Items

DS Decimal String SS Signed Short

DT Date Time ST Short Text

FL Floating Point Single SV Signed 64-bit Very Long

FD Floating Point Double TM Time

IS Integer String UC Unlimited Characters

LO Long String UI Unique Identifier

LT Long Text UL Unsigned Long

OB Other Byte UN Unknown

OD Other Double UR URI or URL

OF Other Float US Unsigned Short

OL Other Long UT Unlimited Text

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

29© Copyright Merge Healthcare Solutions Inc. 2023

A single attribute can have multiple values. Value Multiplicity defines the number of values an attri-
bute can have. VM can be specified as 1, k , 1-k or 1-n, where k is some integer value and n rep-
resents 'many'. For example, Part 6 specifies the VM of Scheduled Discharge Time (0038, 001D) as
1, while the VM of Referenced Overlay Plane Groups (2040, 0011) is 1-99.

2.3.2. Message Handling

Given the number of services and commands specified in TABLE 2.1: DICOM SERVICES CLASSES
AND THEIR COMPONENT SERVICES ON PAGE 18 and TABLE 2.2: DICOM COMMANDS ON PAGE 25, it is
clear that there are a great deal of messages to manage in DICOM. Remember, each service-com-
mand pair implies a different message. Fortunately, you will see later that Merge DICOM Toolkit
saves the application developer a great deal of work in the message handling arena.

DICOM specifies the required contents of each message in Parts 3, 4, and 7 of the standard. For
each attribute included in a message, additional characteristics of the attribute are defined that only
apply within the context of a service. These characteristics are Enumerated Values, Defined Terms,
and Value Type.

DICOM specifies that some attributes should have values from a specified set of values. If the attri-
bute is an enumerated value, it shall have a value taken from the specified set of values. A good
example of enumerated values are (M, F, O) for Patient's Sex (0010, 0040) in Storage services. If the
attribute is a defined term, it may take its value from the specified set, or the set may be extended
with additional values. An example of defined terms are (CREATED, RECORDED, TRANSCRIBED,
APPROVED) for Interpretation Status ID (4008, 0212) in Results Management services. If this set is
extended by an application with another term, such as IN PROCESS, it should be documented in
that application's conformance statement.

The most important characteristic of an attribute that is specified on a message by message basis,
is the Value Type (VT). The VT of an attribute specifies whether or not that attribute needs to be
included in a message and if it needs to have a value. Attributes can be required, optional, or only
required under certain conditions (conditional attributes). Conditional attributes are always speci-
fied along with a condition. The value types defined by DICOM are listed in the table below. Note that
a null valued attribute has a value, that value being null (zero length).

Table 2.4: DICOM Value Types (VT's)

OV Other 64-bit Very Long UV Unsigned 64-bit Very Long

VR Name VR Name

Value Type
(VT)

Description

1 The attribute must have a value and be included in the message. The value cannot
be null (empty).

1C The attribute must have a value and be included in the message only under a
specified condition. The value cannot be null. If that condition is not met, the attri-
bute shall not be included in the message.

2 The attribute must have a value and be included in the message. If the value for the
attribute is unknown and cannot be specified, its value shall be null.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

30© Copyright Merge Healthcare Solutions Inc. 2023

2.3.3. Private Attributes

The DICOM Standard allows application developers to add their own private attributes to a message
as long as they are careful to follow certain rules. A private attribute is identified differently than are
standard attributes. Its tag is composed of an odd group number, a private identification code
string, and a single byte element number.

NOTE: Odd groups are private.

For example, ACME Imaging Inc. might define a private attribute to hold the name of the field engi-
neer that last serviced their equipment. They could assign this attribute to private attribute tag
(1455, 'ACME_IMG_INC', 00). This attribute has group number 1455, a private identification code
string of 'ACME_IMG_INC', and a single byte element number of 00.

ACME could assign up 255 other private attributes to private group 1455 by using the other element
numbers (01-FF). Part 5 of DICOM explains how these private tags are translated to standard group
and element numbers and encoded into a message, while avoiding collisions. Merge DICOM Toolkit
handles these details for you.

DICOM makes a couple of rules that must be followed when using private attributes:

● Private attributes shall not be used in place of required (Value Type 1, 1C, 2, or 2C) attributes.

● The possible value representations (VRs) used for private attributes shall be only those speci-
fied by the standard (see TABLE 2.4: DICOM VALUE TYPES (VT'S) ON PAGE 29).

The way you use private attributes in your application can also greatly affect your conformance
statement. DICOM conformance is discussed in greater detail later.

2.4. Media Interchange
The DICOM Standard specifies a DICOM file format for the interchange of medical information on
removable media. This file format is a logical extension of the networking portion of the standard.
When an object instance that was communicated over a network would also be of value when com-
municated via removable media, DICOM specifies the encapsulation of these object instances in a
DICOM file.

2C The attribute must have a value and be included in the message only under a
specified condition. If the value for the attribute is unknown and cannot be speci-
fied, its value shall be null. If that condition is not met, the attribute shall not be
included in the message

3 The attribute is optional. It may or may not be included in the message. If included,
the attribute may or may not have a null value.

Value Type
(VT)

Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

31© Copyright Merge Healthcare Solutions Inc. 2023

2.4.1. DICOM Files

DICOM File Structure

A DICOM File is the encapsulation of a DICOM object instance, along with File Meta Information.
File meta information is stored in the header of every DICOM file and includes important identifying
information about the encapsulated object instance and its encoding within the file (see the figure
below).

The file meta information begins with a 128 byte buffer available for application profile or implemen-
tation specific use. Application Profiles standardize a number of choices related to a specific clini-
cal need (modality or application) and are specified in Part 11 of the DICOM Standard. The next four
bytes of the meta information contain the DICOM prefix, which is always “DICM” in a DICOM file
and can be used as an identifying characteristic for all DICOM files. The remainder of the file (pre-
amble and object instance) is encoded using tagged attributes (as in a DICOM Message).

The object instances that can be stored within the DICOM file are equivalent to a subset of the
object instances that can be transmitted in network messages. The services that can be performed
to interchangeable media are italicized in TABLE 2.1: DICOM SERVICES CLASSES AND THEIR COMPO-
NENT SERVICES ON PAGE 18 The Media Storage Service Class (in Part 4 of the DICOM standard)
specifies which service-command pairs can be performed to media. Remember it is the service
command pair that identifies the object instance portion of the message, and it is only the object
instance portion of the message that is stored in a DICOM file. The command attributes associated
with a network message are never stored in a DICOM File.

DICOM Objects Written to Media

The service command pairs whose corresponding object instances can be stored to media are
summarized in the table below.

NOTE: The Media Storage Directory Service is not performed over a network and the single object
specified in the Basic Directory Information Object Definition (Part 3) is used.

Table 2.5: Service-Command Pairs Specifying Object Instances that can be Stored in a DICOM File

Service Command

12-lead ECG Waveform Storage C-STORE

Advanced Blending Presentation State Storage C-STORE

Ambulatory ECG Waveform Storage C-STORE

Arterial Pulse Waveform Storage C-STORE

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

32© Copyright Merge Healthcare Solutions Inc. 2023

Audio Waveform Real-Time Communication C-STORE

Autorefraction Measurements Storage C-STORE

Basic Color Image Box N-SET

Basic Film Box N-CREATE

Basic Film Session N-CREATE

Basic Grayscale Image Box N-SET

Basic Structured Display Storage C-STORE

Basic Text Structured Reporting C-STORE

Basic Voice Audio Waveform Storage C-STORE

Blending Softcopy Presentation State Storage C-STORE

Body Position Waveform Storage C-STORE

Breast Projection X-Ray Image Storage - For Presentation C-STORE

Breast Projection X-Ray Image Storage - For Processing C-STORE

Breast Tomosynthesis Image Storage C-STORE

C-Arm Photon-Electron Radiation Record Storage C-STORE

C-Arm Photon-Electron Radiation Storage C-STORE

Cardiac Electrophysiology Waveform Storage C-STORE

Chest CAD SR C-STORE

Colon CAD SR C-STORE

Color Palette Storage C-STORE

Color Softcopy Presentation State Storage C-STORE

Comprehensive Structured Reporting C-STORE

Computed Radiography Image Storage C-STORE

CT Image Storage C-STORE

Deformable Spatial Registration Storage C-STORE

Dermoscopic Photography Image Storage C-STORE

Detached Interpretation Management N-GET

Detached Patient Management N-GET

Detached Results Management N-GET

Detached Study Management N-GET

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

33© Copyright Merge Healthcare Solutions Inc. 2023

Detached Study Component Management N-GET

Detached Visit Management N-GET

Digital Intra-oral X-Ray Image Storage - For Presentation C-STORE

Digital Intra-oral X-Ray Image Storage - For Processing C-STORE

Digital Mammography Image Storage - For Presentation C-STORE

Digital Mammography Image Storage - For Processing C-STORE

Digital X-Ray Image Storage - For Presentation C-STORE

Digital X-Ray Image Storage - For Processing C-STORE

Electromyogram Waveform Storage C-STORE

Electrooculogram Waveform Storage C-STORE

Encapsulated CDA Storage C-STORE

Encapsulated MTL Storage C-STORE

Encapsulated OBJ Storage C-STORE

Encapsulated PDF Storage C-STORE

Encapsulated STL Storage C-STORE

Enhanced CT Image Storage C-STORE

Enhanced MR Color Image Storage C-STORE

Enhanced MR Image Storage C-STORE

Enhanced PET Image Storage C-STORE

Enhanced Structured Reporting C-STORE

Enhanced US Volume Storage C-STORE

Enhanced X-Ray Radiation Dose SR Storage C-STORE

Enhanced XA Image Storage C-STORE

Enhanced XRF Image Storage C-STORE

General Audio Waveform Storage C-STORE

General ECG Waveform Storage C-STORE

Generic Implant Template Storage C-STORE

Grayscale Softcopy Presentation State Storage C-STORE

Hanging Protocol Storage C-STORE

Hemodynamic Waveform Storage C-STORE

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

34© Copyright Merge Healthcare Solutions Inc. 2023

Implant Assembly Template Storage C-STORE

Implant Template Group Storage C-STORE

Implantation Plan SR Document Storage C-STORE

Intraocular Lens Calculations Storage C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Presentation C-STORE

Intravascular Optical Coherence Tomography Image Storage - For Processing C-STORE

Inventory C-STORE

Keratometry Measurements Storage C-STORE

Key Object Selection C-STORE

Legacy Converted Enhanced CT Image Storage C-STORE

Legacy Converted Enhanced MR Image Storage C-STORE

Legacy Converted Enhanced PET Image Storage C-STORE

Lensometry Measurements Storage C-STORE

Macular Grid Thickness and Volume Report C-STORE

Mammography CAD SR C-STORE

Media Storage Directory Storage C-STORE*

Microscopy Bulk Simple Annotations Storage C-STORE

MR Image Storage C-STORE

MR Spectroscopy Storage C-STORE

Multi-channel Respiratory Waveform Storage C-STORE

Multi-frame Grayscale Byte Secondary Capture Image Storage C-STORE

Multi-frame Grayscale Word Secondary Capture Image Storage C-STORE

Multi-frame Single Bit Secondary Capture Image Storage C-STORE

Multi-frame True Color Secondary Capture Image Storage C-STORE

Multiple Volume Rendering Volumetric Presentation State Storage C-STORE

Nuclear Medicine Image Storage C-STORE

Ophthalmic 16 bit Photography Image Storage C-STORE

Ophthalmic 8 bit Photography Image Storage C-STORE

Ophthalmic Axial Measurements Storage C-STORE

Ophthalmic Optical Coherence Tomography B-scan Volume Analysis Storage C-STORE

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

35© Copyright Merge Healthcare Solutions Inc. 2023

Ophthalmic Optical Coherence Tomography En Face Image Storage C-STORE

Ophthalmic Tomography Image Storage C-STORE

Ophthalmic Visual Field Static Perimetry Measurements Storage C-STORE

Parametric Map Storage C-STORE

Patient Radiation Dose SR Storage C-STORE

Performed Imaging Agent Administration SR Storage C-STORE

Planned Imaging Agent Administration SR Storage C-STORE

Positron Emission Tomography Image Storage C-STORE

Procedure Log C-STORE

Protocol Approval Storage C-STORE

Pseudo-Color Softcopy Presentation State Storage C-STORE

Raw Data Storage C-STORE

Real World Value Mapping Storage C-STORE

Rendition Selection Document Real-Time Communication C-STORE

Respiratory Waveform Storage C-STORE

Robotic-Arm Radiation Record Storage C-STORE

Robotic-Arm Radiation Storage C-STORE

Routine Scalp Electroencephalogram Waveform Storage C-STORE

RT Beams Delivery Instruction Storage C-STORE

RT Beams Treatment Record Storage C-STORE

RT Brachy Treatment Record Storage C-STORE

RT Dose Storage C-STORE

RT Image Storage C-STORE

RT Ion Beams Treatment Record Storage C-STORE

RT Ion Plan Storage C-STORE

RT Physician Intent Storage C-STORE

RT Plan Storage C-STORE

RT Radiation Record Set Storage C-STORE

RT Radiation Salvage Record Storage C-STORE

RT Radiation Set Delivery Instruction Storage C-STORE

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

36© Copyright Merge Healthcare Solutions Inc. 2023

RT Radiation Set Storage C-STORE

RT Segment Annotation Storage C-STORE

RT Structure Set Storage C-STORE

RT Treatment Preparation Storage C-STORE

RT Treatment Summary Record Storage C-STORE

Secondary Capture Image Storage C-STORE

Segmentation Storage C-STORE

Segmented Volume Rendering Volumetric Presentation State Storage C-STORE

Sleep Electroencephalogram Waveform Storage C-STORE

Spatial Registration Storage C-STORE

Spatial Fiducials Storage C-STORE

Spectacle Prescription Report Storage C-STORE

Standalone Overlay Storage C-STORE

Standalone Curve Storage C-STORE

Standalone Modality LUT Storage C-STORE

Standalone VOI LUT Storage C-STORE

Stereometric Relationship Storage C-STORE

Subjective Refraction Measurements Storage C-STORE

Surface Segmentation Storage C-STORE

Tomotherapeutic Radiation Record Storage C-STORE

Tomotherapeutic Radiation Storage C-STORE

Ultrasound Image Storage C-STORE

Ultrasound Multi-frame Image Storage C-STORE

Video Endoscopic Image Storage C-STORE

Video Endoscopic Image Real-Time Communication C-STORE

Video Microscopic Image Storage C-STORE

Video Photographic Image Storage C-STORE

Video Photographic Image Real-Time Communication C-STORE

Visual Acuity Measurements Storage C-STORE

VL Endoscopic Image Storage C-STORE

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

37© Copyright Merge Healthcare Solutions Inc. 2023

* Merge DICOM Toolkit defines a C-STORE command for the Media Storage Directory (DICOM-
DIR) service even though it does not formally exist In the DICOM Standard.

Finally, the DICOM file can be padded at the end with the Data Set Trailing Padding attribute (FFFC,
FFFC) whose value is specified by the standard to have no significance.

2.4.2. File Sets

DICOM Files must be stored on removable media in a DICOM File Set. A DICOM file set is defined
as a collection of DICOM files sharing a common naming space within which file ID's are unique
(e.g., a file system partition). A DICOM File Set ID is a string of up to 16 characters that provides a
name for the file set.

A File ID is a name given to a DICOM file that is mapped to each media format specification (in Part
12 of DICOM). A file ID consists of an ordered sequence of one to eight components, where each
component is a string of one to eight characters. One can certainly imagine mapping such a file ID
to a hierarchical file system, and this is done for several media formats in Part 12. It is important to
note that DICOM states that no semantic relationship between DICOM files shall be conveyed by
the contents or structure of file IDs (for example, the hierarchy). This helps ensure that DICOM files
can be stored in a media format and file system independent manner.

Naming DICOM File Sets and File IDs

The allowed characters in both a file ID and file set ID are a subset of the ASCII character set con-
sisting of the uppercase characters (A-Z), the numerals (0-9), and the underscore (_).

VL Microscopic Image Storage C-STORE

VL Photographic Image Storage C-STORE

VL Slide-Coordinates Microscopic Image Storage C-STORE

VL Whole Slide Microscopy Image Storage C-STORE

Volume Rendering Volumetric Presentation State Storage C-STORE

Wide Field Ophthalmic Photography 3D Coordinates Image Storage C-STORE

Wide Field Ophthalmic Photography Stereographic Projection Image Storage C-STORE

X-Ray Angiographic Image Storage C-STORE

X-Ray Radiofluoroscopic Image Storage C-STORE

X-Ray Radiation Dose SR Storage C-STORE

X-Ray 3D Angiographic Image Storage C-STORE

X-Ray 3D Craniofacial Image Storage C-STORE

XA/XRF Grayscale Softcopy Presentation State Storage C-STORE

XA Defined Procedure Protocol Storage C-STORE

XA Performed Procedure Protocol Storage C-STORE

Service Command

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

38© Copyright Merge Healthcare Solutions Inc. 2023

2.4.3. DICOMDIR

The DICOM Directory File or DICOMDIR is a special type of DICOM File. A single DICOMDIR must
exist within each DICOM file set and is always given the file ID “DICOMDIR”. It is the DICOMDIR file
that contains identifying information about the entire file set, and usually (dependent on the Appli-
cation Profile) a directory of the file set's contents.

The figure below shows a graphical representation of a DICOMDIR file and its central role within a
DICOM File Set.

The DICOMDIR Hierarchy

If the DICOMDIR file contains directory information, it is composed of a hierarchy of directory enti-
ties, with the top-most directory entity being the root directory entity. A Directory Entity is a group-
ing of semantically related directory records. A Directory Record identifies a DICOM File by
summarizing key attributes and their values in the file and specifying the file ID of the correspond-
ing file. The file ID can then be used, in the context of the native file system, to access the corre-
sponding DICOM file. Each directory record can in turn point down the hierarchy to a semantically
related directory entity.

Part 3 of the DICOM Standard specifies the allowed relationships between directory records in the
section defining the Basic Directory IOD. The table below is reproduced for pedagogical reasons;
but, you should refer to the DICOM Standard for the most up-to-date and accurate specification.

Table 2.6: Allowed Directory Entity

Directory Record Type Record Types which may be included in the next lower-level Directory En-
tity

(Root Directory Entity) PATIENT, HANGING PROTOCOL, PALETTE, IMPLANT, IMPLANT ASSY,
IMPLANT GROUP, PRIVATE

PATIENT STUDY, HL7 STRUC DOC, PRIVATE

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

39© Copyright Merge Healthcare Solutions Inc. 2023

STUDY SERIES, PRIVATE

SERIES IMAGE, RT DOSE, RT STRUCTURE SET, RT PLAN, RT TREAT RECORD, PRE-
SENTATION, WAVEFORM, SR DOCUMENT, KEY OBJECT DOC, SPECTROS-
COPY, RAW DATA, REGISTRATION, FIDUCIAL, ENCAP DOC, VALUE MAP,
STEREOMETRIC, PLAN, MEASUREMENT, SURFACE, PRIVATE

IMAGE PRIVATE

RT DOSE PRIVATE

RT STRUCTURE SET PRIVATE

RT PLAN PRIVATE

RT TREAT RECORD PRIVATE

PRESENTATION PRIVATE

WAVEFORM PRIVATE

SR DOCUMENT PRIVATE

KEY OBJECT DOC PRIVATE

SPECTROSCOPY PRIVATE

RAW DATA PRIVATE

REGISTRATION PRIVATE

FIDUCIAL PRIVATE

HANGING PROTOCOL PRIVATE

ENCAP DOC PRIVATE

HL7 STRUC DOC PRIVATE

VALUE MAP PRIVATE

STEREOMETRIC PRIVATE

PALETTE PRIVATE

IMPLANT PRIVATE

IMPLANT ASSY PRIVATE

IMPLANT GROUP PRIVATE

PLAN PRIVATE

MEASUREMENT PRIVATE

SURFACE PRIVATE

PRIVATE PRIVATE, (any of the above as privately defined)

Directory Record Type Record Types which may be included in the next lower-level Directory En-
tity

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

40© Copyright Merge Healthcare Solutions Inc. 2023

2.4.4. File Management Services and Roles

File Management Services

Part 10 of the DICOM Standard specifies a set of file management roles and services. There are five
DICOM File Services that describe the entire set of DICOM file operation primitives:

Table 2.7: DICOM File Services

The Merge DICOM Toolkit supplies families of functions that perform the first two file services. The
Toolkit also implements enhanced read and write functionality for the creation and maintenance of
DICOMDIR files and its hierarchy of directory entities and directory records. The remaining three
file services are best implemented by the application entity through file system calls because they
are file system dependent operations.

File Management Roles

DICOM Application Entities that perform file interchange functionality are in turn classified into
three roles:

● File Set Creator (FSC) - Uses M-WRITE operations to create a DICOMDIR file and one or more
DICOM files.

● File Set Reader (FSR) - Uses M-READ operations to access one or more files in a DICOM file
set. An FSR shall not modify any files of the file set (including the DICOMDIR file).

● File Set Updater (FSU) - Performs M-READ, M-WRITE, and M-DELETE operations. It reads, but
shall not modify the content of any DICOM files other than the DICOMDIR file. It may create
additional files by means of an M-WRITE or delete existing files by means of an M-DELETE.

The concept of these roles is used within the DICOM conformance statement of an application
entity that supports media interchange to more precisely express the capabilities of the implemen-
tation. Conforming applications shall support one of the capability sets specified in the table below.
DICOM conformance is described in greater detail in the next section.

Table 2.8: Media Application Operations and Roles

DICOM File Services Description

M-WRITE Create new files in a file set and assign them a file ID.

M-READ Read existing files based on their file ID.

M-DELETE Delete existing files based on their file ID.

M-INQUIRE FILE-SET Inquire free space available for creating new files within a file set.

M-INQUIRE FILE Inquire date and time of file creation (or last update if applicable) for any file
within a file set.

Media Roles M-WRITE M-READ M-DELETE M-INQUIRE
FILE-SET

M-INQUIRE
FILE

FSC Mandatory Not Required Not Required Mandatory Mandatory

FSR Not Required Mandatory Not Required Not Required Mandatory

FSC+FSR Mandatory Mandatory Not Required Mandatory Mandatory

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

41© Copyright Merge Healthcare Solutions Inc. 2023

2.5. Conformance
Part 2 of DICOM discusses conformance and is important to any AE developer. For an application
to be DICOM conformant it must:

● meet the minimum general conformance requirements specified in Part 2 and service specific
conformance requirements specified in Part 4 (Network Services), and/or Parts 10 and 11
(Media Services); and

● have a published DICOM conformance statement detailing the above conformance and any
optional extensions.

Conformance also applies to aspects of the communications protocol that are managed by the
DICOM Toolkit. Most parameters are configurable by your application. The conformance statement
for the Merge DICOM Toolkit in the Reference Manual lists all these protocol parameters and how
they can be configured.

Conformance Statement templates in each of the Sample Application Guides also provide guid-
ance in preparing your conformance statement for your application.

Part 2 also deals with private extensions to the DICOM Standard by defining Standard Extended
Services. Standard Extended Services give your application a little more flexibility, by allowing you to
add private attributes as long as they are of value type 3 (optional) and are documented in the con-
formance statement.

DICOM also allows you to define your own Specialized and Private Services. These should be
avoided by most applications since they are non-standard, add complexity to your application, and
limit interoperability.

If you are significantly extending services or creating your own private services, you may need the
Merge DICOM Toolkit Extended Toolkit to assist in defining these services so that they can be sup-
ported by the toolkit.

FSU Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC+FS
R

Mandatory Mandatory Mandatory Mandatory Mandatory

Media Roles M-WRITE M-READ M-DELETE M-INQUIRE
FILE-SET

M-INQUIRE
FILE

42© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 3. Using Merge DICOM Toolkit

You can use the Merge DICOM Toolkit 'out of the box' by using its supplied utility programs and
sample applications. In this section we discuss how to configure the toolkit and to use the utility
programs. Use of the sample applications is described in the sample application guides. Later, we
discuss how to develop your own DICOM applications using the Merge DICOM Toolkit library.

3.1. Configuration
Merge DICOM Toolkit is highly configurable and understanding its configuration files is critical to
using the library effectively.

Related parameters are grouped into sections in a configuration file as follows:

[SECTION_1]

PARAMETER_1 = value1

PARAMETER_2 = value2

[SECTION_2]

PARAMETER_3 = value3

...

Related sections are grouped into one of four configuration files:

● initialization file

● application profile

● system profile

● service profile

Each of these configuration files is discussed separately below. Only the key configurable parame-
ters are summarized in this document. See the Merge DICOM Toolkit Reference Manual for
detailed descriptions of all configuration files and their parameters.

3.1.1. Initialization File

The Merge DICOM Toolkit Initialization File (usually called merge.ini) provides the DICOM Toolkit
with its top-level configuration. It specifies the location of the other three configuration files, along
with message and error logging characteristics.

MERGE_INI Environment Variable

There are two options to access the merge.ini file for your runtime environment. The function
MC_Set_MergeINI() can be used to assign the path where the merge.ini file is located. You can
also set the MERGE_INI environment variable to point to the Merge Initialization File. This variable
can be set within a command shell. For example:

In Unix C-shell:

setenv MERGE_INI /users/mc3adv/merge.ini

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

43© Copyright Merge Healthcare Solutions Inc. 2023

In Unix Bourne, Korn, or Bash shell:

MERGE_INI=/users/mc3adv/merge.ini; export MERGE_INI

In DOS command shell:

set MERGE_INI=C:\mc3adv\merge.ini

See the Platform Notes for your platform if none of these methods apply.

The initialization file contains one [MergeCOM3] section that points to the location of the other three
Merge DICOM Toolkit initialization files, specifies characteristics of the message/error log kept by
the DICOM Toolkit library, turns particular types of logging on and off, and specifies where the mes-
sages are logged (file, screen, both, or neither). In most cases the INFO, WARNING, and ERROR
messages will be sufficient. The Tn_MESSAGE settings (where n is an integer between 1 and 9) turns
on lower-level protocol tracing capabilities. These capabilities can prove useful when running into
difficulties communicating with other implementations of DICOM over a network and can be used
by Merge service engineers in diagnosing lower-level network problems.

See Appendix B: Configuration Parameters of the Merge DICOM Toolkit Reference Manual for
details on the toolkit's configuration.

3.2. Message Logging
Merge DICOM Toolkit supplies a message logging facility whereby three primary classes of mes-
sages can be logged to a specified file and/or standard output:

● Errors

● Warnings

● Status

Error messages include unrecoverable errors, such as “association aborted”, or “failure to connect
to remote application”. Other error messages may be catastrophic but it is left to the application to
determine whether or not to abort an association, such as an “invalid attribute value” or “missing
attribute value” in a DICOM message.

Warnings are meant to alert toolkit users to unusual conditions, such as missing parameters that
are defaulted or attributes having values that are not one of the defined terms in the standard.

Status messages include high-level messages describing the opening of associations and exchang-
ing of messages over open associations.

As discussed earlier, other more detailed logging can be obtained by using the T1_MESSAGE
through T9_MESSAGE logging levels. For example, the T5_MESSAGE logging level can be used to log
the results of an MC_Validate_Message() call (for more information, see the Merge DICOM Tool-
kit Reference Manual).

The trace logging levels are intended strictly for debugging purposes. If left on, they can seriously
degrade toolkit performance. In particular, the T2, T7 and T9 levels should be turned off in normal
operation.

An excerpt from a Merge DICOM Toolkit message log file is included below that contains all three
classes of messages: errors, warnings, and informational.

Message Log Example:

...

03-29 21:14:54.77 MC3 W: (0010,1010): Value from stream had problem:

03-29 21:14:54.78 MC3 W: | Invalid value for this tag's VR

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

44© Copyright Merge Healthcare Solutions Inc. 2023

03-29 21:14:56.41 MC3(Read_PDU_Head) E: Error on Read_Transport call

03-29 21:14:56.41 MC3(MCI_nextPDUtype) E: Error on Read_PDU_Head call

03-29 21:14:56.41 MC3(Transport_Conn_Closed_Event) E: Transport unex-
pectedly closed

03-29 21:14:56.41 MC3(MCI_ReadNextPDV) I: DUL_read_pdvs error: UL
Provider aborted the association

03-29 21:14:56.41 MC3 E: (0000,0000): Error during MC_Stream_To_Mes-
sage:

03-29 21:14:56.41 MC3 E: | Callback cannot comply

03-29 21:14:56.41 MC3(MC_Read_Message) E: Network connection unex-
pectedly shut down

...

On many DICOM Toolkit computing platforms, additional information is logged, such as process
and thread id numbers identifying where the message was generated.

3.3. Utility Programs
The Merge DICOM Toolkit supplies several useful utility programs. These utilities can be used to
help you validate your own implementations and better understand the standard.

All these utilities use the Merge DICOM Toolkit Library and require that you set your MERGE_INI
environment variable to point to the proper configuration files (as described earlier).

3.3.1. mc3comp

Do a DICOM ‘diff’

The mc3comp utility can be used to compare the differences between two DICOM objects. The
objects can be encoded in either the DICOM file or "stream" format and do not have to be encoded
in the same format. The utility will output differences in tags between the messages taking into
account differences in byte ordering and encoding. The syntax for the utility is the following:

mc3comp [-t1 <syntax> -t2 <syntax>] [-e file] [-o -m1 -m2] file1 file2

-t1 <syntax> Optional specify transfer syntax of 'file1' message,
where <syntax> = 'il' for implicit little endian (default), 'el' for
explicit little endian, 'eb' for explicit big endian
-t2 <syntax> Optional specify transfer syntax of 'file2' message,
where <syntax> = 'il' for implicit little endian (default), 'el' for
explicit little endian, 'eb' for explicit big endian
-e <file> Optional exception file of all tags to ignore in comparison
-o Compare OB/OW (e.g., binary pixel) data
-m1 Compare 'file1' in DICOM-3 file format.
-m2 Compare 'file2' in DICOM-3 file format.
-h Show these options.
file1 DICOM SOP Instance (message) file
file2 Another DICOM SOP Instance (message) file

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

45© Copyright Merge Healthcare Solutions Inc. 2023

Example: mc3comp -t1 il -m2 -o 1.img 1.dcm

3.3.2. mc3conv

Convert Image Formats

The mc3conv utility can be used to convert a DICOM object between various transfer syntaxes and
formats. The utility will read an input file and then write the output file in the transfer syntax specified
in the command line. The utility can also convert between DICOM “stream” format and the DICOM
file format. Note that on platforms that supporting the Pegasus libraries for compression, the utility
can also compress and decompress images. The syntax for the mc3conv utility is the following:

mc3conv input_file output_file [-t <syntax>] [-p] [-m] [-x]

[-s <syntax>] [-tag <tag> <"new value">]

input_fileDICOM SOP Instance (message) file
output_fileOutput DICOM SOP Instance (message) file

-tSpecify transfer syntax for 'output_file', where

 <syntax> = 'il' for implicit little endian (default)

'el' for explicit little endian

'eb' for explicit big endian

'ib' for implicit big endian

'jb' for jpeg baseline

'je' for jpeg extended 2_4

'jl' for jpeg lossless hier 14

'j2lo' for jpeg 2000 lossless only

'j2' for jpeg 2000

'rle' for rle

-mSpecify format of 'output_file' to be DICOM-3 media

(Part 10) format.

-s Specify transfer syntax for 'input_file'

-p Just extract the pixel data from 'input_file' into

'output_file'. If multiframe and encapsulated,

'_x' is appended to 'output_file' for each frame

-tag Change value for this tag in 'output_file', where

<tag> = the tag that is to be changed in hex 0x... <new

value> = the value for the tag in quotes, multi values

separated as "val1\val2"

-x Specify format of 'output_file' to be XML format

-h Get help - print this usage description

Example: mc3conv in.img out.dcm -t el -m

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

46© Copyright Merge Healthcare Solutions Inc. 2023

3.3.3. mc3echo

Do a DICOM 'ping'

The mc3echo utility validates application level communication between two DICOM AEs. An echo
test is the equivalent of a network 'ping' operation, but at the DICOM application level rather than
the TCP/IP transport level.

All server (SCP) applications built with the DICOM Toolkit also have built-in support of the Verifica-
tion Service Class and the C-ECHO command.

The command syntax follows:

mc3echo [-c count] [-r remote_host] [-l local_app_title]

[-p remote_port] remote_app_title

-c count Integer number specifying the number of echoes to
send to the remote host. If -c is not specified, one
echo will be performed

-r remote_host Host name of the remote computer If -r is not spec-
ified, the default value for remote_host is config-
ured in the Application Profile.

-l local_app_title Application title of this program. If -l is not
specified, the default value for local_app_title is
MERGE_ECHO_SCU

-p remote_port Port number the remote computer is listening on. If
-p is not specified, the default value for
remote_host is configured in the Application Pro-
file.

3.3.4. mc3list

Display Message Contents

mc3list displays the contents of binary DICOM message files in an easy to read manner. The mes-
sage files could have been generated by mc3file (see 3.3.6. MC3FILE ON PAGE 48) or written out by
your application.

mc3list is a useful educational tool as well as a tool that can be used for off-line display of the
DICOM messages your application generates or receives.

The command syntax follows:

mc3list <filename> [-t <syntax>] [-m]

filename Filename containing message to display

-t Specify transfer syntax of message, where syntax is

 "il" (implicit little endian),

 "el" (explicit little endian), or

 "eb" (explicit big endian)

-m Optional display a DICOM file object

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

47© Copyright Merge Healthcare Solutions Inc. 2023

If the DICOM service and/or command cannot be found in the message file, a warning will be dis-
played, but the message will still be listed.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message will not be displayed correctly.

3.3.5. mc3valid

The mc3valid utility validates binary message files according to the DICOM standard and notifies
you of missing attributes, improper data types, illegal values, and other problems with a message.
mc3valid is a powerful educational and validation tool that can be used for the off-line validation
of the DICOM messages your application generates or receives.

The command syntax follows:

mc3valid <filename> [-e|-w|-i] [-s <serv> -c <cmd>] [-p] [-q]

[-t <syntax>]

<filename> Filename containing message to validate

-e Display error messages only (optional)

-w Display error and warning messages (optional,

 default)

-i Display informational, error, and warning messages

 (optional)

-s <serv>Force the message to be validated against service

 name "serv", used along with '-c' (optional)

-c <cmd> Force the message to be validated against command

 name "cmd", used along with '-s' (optional)

-q Disable prompting for correct service-command pairs
(optional)

-p Use message template to validate message against (optional,
maintained for backward compatibility

 only)

-tSpecify transfer syntax of message, where

 syntax = "il" (implicit little endian)

= "el" (explicit little endian)

= "eb" (explicit big endian)

This command validates the specified message file; printing errors, warnings, and information gen-
erated to standard output. The user can force the message to be validated against a specified
DICOM service-command pair if the message does not already contain this information.

If the service-command pair is not contained in the message, the program will list the possible ser-
vice-command pairs and the user can select one of them. When using this program with a batch
file, this option can be shut off with the -q flag.

The default transfer syntax is implicit little endian (the DICOM default transfer syntax). If the transfer
syntax is incorrectly specified, the message cannot be validated.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

48© Copyright Merge Healthcare Solutions Inc. 2023

Limitations

While mc3valid's message validation is quite comprehensive, it does have limitations. These limita-
tions are discussed in detail in the description of the MC_Validate_Message() function in the
Merge DICOM Toolkit Reference Manual. The DICOM Standard should always be considered the
final authority.

3.3.6. mc3file

Sample DICOM messages can be generated with the mc3file utility. You specify the service, com-
mand, and transfer syntax and mc3file generates a 'reasonable' sample message that is written to
a binary file. The contents of this file are generated in DICOM file format or in exactly the format as
the message would be streamed over the network.

The program fills in default values for all the required attributes within the message. You can also
use this utility to generate its own configuration file, which you can then modify to specify your own
values for attributes in generated messages.

These generated messages are purely meant as 'useful' examples that can be used to test message
exchange or give the application developer a feel for the structure of DICOM messages. They are
not intended to represent real world medical data.

The messages generated can be validated or listed with the mc3list and mc3valid utilities. The
command syntax for mc3file is the following:

mc3file <serv> <cmd> <num> [-g <file>] [-c <file>] [-l] [-m]

[-q] [-t <syntax>] [-f <file>]

<serv> <cmd> These two options are always used together. They spec-
ify the service name and command for the message to be generated.
These names can be either upper or lower case. If the exact names
for a service command pair are not known, the -l option can be
used instead to specify the service name and command. If the ser-
vice name and command are improperly specified, mc3file will act
as if the -l option was used and ask the user to input the cor-
rect service name and command.

<num> This option specifies the number of message files to be gen-
erated by mc3file. If the -g option is used, this option is not
needed on the command line. If the -c option is used, mc3file
assumes the number is 1, although a higher number can be speci-
fied on the command line. mc3file will vary any fields that have
a value representation of time when multiple files are generated,
although when the -c option is used, the utility will use the
time fields as specified in the configuration file. Thus multiple
message files generated with the -c option are identical.

-g <file> This option causes mc3file to generate an ASCII configu-
ration file. The file contains a listing of all the valid attri-
butes for the specified message. The utility also adds sequences
contained in the message along with their attributes. Each
attribute in the file contains the tag, value representation,

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

49© Copyright Merge Healthcare Solutions Inc. 2023

and the default value MC3File uses for the attribute. If a given
attribute has more than one value, the character "\" is used to
delimit the values. A default value listed as "NULL" means the
attribute is set to NULL. If the filename specified already
exists, it will be written over my MC3File. The configuration
file can be modified and reloaded into MC3File with the -c option
to generate a DICOM message.

-c <file> This option reads in a configuration file previously gen-
erated by mc3file. The service name and command for the message
need not be specified on the command line because they are con-
tained in <filename>. Because multiple files generated with this
option are identical, mc3file assumes only one file should be
generated. This assumption can be overridden by specifying a num-
ber on the command line.

-l This option lists all the service command pairs supported by
mc3file. When generating a message, this option can be used
instead of explicitly specifying the service name and command on
the command line. When specified alone in the command line, the
complete list of pairs is printed out without pausing.

-m This option allows the user to generate a DICOM file. When gen-
erating the file object, mc3file encodes the File Meta Informa-
tion.

-q This option prevents mc3file from prompting the user for cor-
rect service command pairs. It is a useful option when running
the program from a batch file.

-t <syntax> This option specifies the transfer syntax the DICOM
message generated is stored in. The default transfer syntax is
implicit little endian. The possible values for <syntax> are
"il" for implicit little endian, "el" for explicit little
endian, and "eb" for explicit big endian.

-f <file>This option allows the user to specify the first eight
characters of the names of the DICOM message files being gener-
ated. mc3file will then append a unique count to the end of the
filename for each message being generated. The default value is
"file" when creating a DICOM file and "message" when creating the
format that DICOM messages send over a network.

mc3file retrieves default values for attributes from the text file “default.pfl”. Unlike the “info.pfl”
and “diction.pfl” files which are converted into binary files, “default.pfl” is used as a text file. It will
first be searched for in the current directory and then in the message information directory. This file
contains default values for all messages and for specific service-command pairs. This file can be
modified to contain defaults specific for the user, although it is recommended that a backup of the

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

50© Copyright Merge Healthcare Solutions Inc. 2023

original be kept. If this file is modified, there are no guarantees that the messages generated will val-
idate properly.

51© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 4. Developing DICOM Applica-
tions

The Merge DICOM Toolkit Application Programming Interface (API) provides simple yet powerful
DICOM functionality. Function calls are provided that open associations with remote servers, wait
for associations from remote clients, and deal with DICOM message exchange over an open associ-
ation. Functions are also provided for the creation and reading of DICOM files and the creation,
maintenance, and navigation of DICOMDIRs. DICOM Toolkit features include message validation
against the DICOM Standard, support of sequences of items, Callback Functions for flexible han-
dling of Pixel Data, and support of Private Attributes.

This section of the User's Manual attempts to present the highlights of the Merge DICOM Toolkit
API in a logical manner as it might be used in real DICOM applications. The function calls are pre-
sented in the context of example ANSI-C source code snippets, and alternative approaches are
presented that trade off certain features for the benefits of increased performance.

Most of the discussions that follow pertain both to networking and media interchange applications;
only 4.4. ASSOCIATION MANAGEMENT (NETWORK ONLY) ON PAGE 53, 4.5. NEGOTIATED TRANSFER SYN-
TAXES (NETWORK ONLY) ON PAGE 57, and 4.8. MESSAGE EXCHANGE (NETWORK ONLY) ON PAGE 81 are
networking specific. 4.12. DICOM FILES ON PAGE 99 and 4.13. DICOMDIR ON PAGE 107 are media
interchange specific.

4.1. Library Initialization
Your first call to the Merge DICOM Toolkit Library must always be the MC_Library_Initializa-
tion() function. This function specifies how and when you wish to initialize the library with the
contents of its configuration files, data dictionary, and message info files.

Almost all typical applications will initialize themselves from configuration files, and will make use of
the binary dictionary and message info files in building message objects. So, in most cases, the ini-
tialize call will look like the following:

mc_Status = MC_Library_Initialization(NULL, NULL, NULL);

Configurable parameters can be modified by your application after library initialization, at runtime,
by using the MC_Set_..._Config_Value() functions. The toolkit allows you to initialize an inter-
nal system exception handler and add the user-defined exception handler, which will be called in
case of severe system error or signal. These functions are detailed in the Merge DICOM Toolkit Ref-
erence Manual.

If you change the configuration of the library at runtime using the MC_Set_..._Config_Value()
functions and wish to reset it to its initial state, you should use the MC_Library_Reset() function,
which has no parameters. It resets the library to its initial state using the same options as originally
specified in the MC_Library_Initialization() call.

Check Return Codes

You should always check the return code from any function call to Merge DICOM Toolkit to see if an
error occurred. Any value other than MC_NORMAL_COMPLETION implies an error. A possible error
code for this call is MC_INVALID_LICENSE when the toolkit is not configured with a valid license
number. All error codes that can be returned for each API function call are specified in the Merge
DICOM Toolkit Reference Manual.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

52© Copyright Merge Healthcare Solutions Inc. 2023

4.2. Statically Linked Configuration
In specialized applications (such as embedded systems or where performance at initialization time
is critical) one can specify different parameter values to MC_Library_Initialization() to call
initialization functions rather than access files. These initialization functions are generated by two
tools supplied with Merge DICOM Toolkit: genconf and gendict.

genconf generates an ANSI-C module containing the MC_Config_Values() function providing
the contents of the configuration files. This module can be compiled and linked into your applica-
tion, along with the toolkit library, to supply an initial configuration without accessing the file system.
This is done by specifying MC_Config_Values as the first parameter to MC_Library_Initial-
ization().

gendict is similar to genconf in that it generates an ASCII C module, but its function is named
MC_Dictionary_Values() and can be used to initialize the library with the contents of the binary
data dictionary file. By compiling and linking this module into your application, and by specifying
MC_Dictionary_Values as the second parameter to the MC_Library_Initialization(),
your application can access the data dictionary without accessing the file system.

The third parameter of MC_Library_Initialization() is reserved for future use. See the
Merge DICOM Toolkit Reference Manual for further details on these two tools and MC_Li-
brary_Initialization().

4.3. Registering Your Application
Before performing any network or media activity, your application must register its DICOM Applica-
tion Title with the Merge DICOM Toolkit. The toolkit returns to you an Application ID, a handle that
is used to refer to this particular AE in subsequent function calls.

This DICOM Application Title is equivalent to the DICOM Application Entity Title defined earlier. If
your application is a server, this application title must be made known to any client application that
wishes to connect to you. If your application is a client, your application title may need to be made
known to any server you wish to connect to, depending on whether the server is configured to act as
a server (SCP) only to particular clients for security reasons.

For example, if your application title is “ACME_Query_SCP”, you would register with the toolkit as
follows:

Status = MC_Register_Application(&MyAppID, "ACME_Query_SCP");

If you wish to disable your application and free up its resources to the system you should release it
as follows:

Status = MC_Release_Application(&MyAppID);

Even if your application is a media interchange only application, you still need to register it so that
the DICOM Toolkit Library has some way to refer to this application in other calls, such as MC_Reg-
ister_Callback_Function().

Current and potentially future DICOM service classes assume that Application Entity Titles on a
DICOM network are unique. For instance, the retrieve portion of the Query/Retrieve service class
specifies that an image be moved to a specific Application Entity Title (and not to a specific host-
name and listen port). If two identical Application Entity Titles existed on a network, a server appli-
cation can only be configured to move images to one of these applications. For this reason, the
DICOM Application Entity Title for your applications should be configurable.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

53© Copyright Merge Healthcare Solutions Inc. 2023

4.4. Association Management (Network Only)
Once you have registered one or more networking applications, you will probably want to initiate an
association if you are a client, or wait for an association if you are a server.

Opening and closing an association

To initiate an association as a client, you make an MC_Open_Association() call. You specify your
Application ID and the Remote Application Title of the server you wish to connect to. If the associa-
tion is accepted, the function returns normally, with an Association ID that is used to refer to this
association in future calls. When you are done making DICOM service requests (sending and
receiving messages) over the association, you should release the association with an MC_-
Close_Association() call.

You also have the option of using the MC_Open_Secure_Association() call. Use that function if
you will be supplying additional code that will maintain a secure connection using a protocol such as
Secure Socket Layer (SSL) or Transport Layer Security (TLS). Refer to the Merge DICOM Toolkit
Reference Manual for more information about the MC_Open_Secure_Association() call.

Client Side Example:

status = MC_Open_Association(MyStoreClientId, &associationID, Remote-
AppTitle, NULL, NULL, NULL);

if(status != MC_NORMAL_COMPLETION)

{

 printf("Unable to open association with \"%s\":\n", RemoteAppTi-
tle);

 printf("\t%s\n", MC_Error_Message(status));

 return 1;

}

else

 printf("Connected to remote system [%s]\n", RemoteAppTitle);

/* Do your message exchange here */

status = MC_Close_Association(&associationID);

if (status != MC_NORMAL_COMPLETION)

{

 printf("Close association failed\n"); printf("\t%s\n", MC_Er-
ror_Message(status));

 return 1;

}

/*

* Now you can exit normally.

*/

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

54© Copyright Merge Healthcare Solutions Inc. 2023

Waiting for an association

There are two methods to wait for associations for server applications. The first is to use the
MC_Wait_For_Association() call. The second method is to use the MC_Wait_For_Connec-
tion() call in conjunction with the MC_Process_Association_Request() call. The MC_Wait_-
For_Association() call is the traditional method for waiting for associations with Merge DICOM
Toolkit. The MC_Wait_For_Connection() call was introduced to address an inherent design
problem with MC_Wait_For_Association(). Specifically, if a remote system connecting is slow
in sending its association negotiation information, MC_Wait_For_Assocation() does not pro-
cess any other connections while it is waiting for this information. It is recommended that
MC_Wait_For_Connection() be used instead for any new applications being developed with
Merge DICOM Toolkit.

When using the MC_Wait_For_Association() call, you can specify a timeout to indicate how
long you wish to wait for a valid association request; if you specify a timeout of -1 you wait forever. If
this call returns with a status of MC_NORMAL_COMPLETION, an Application ID is returned that indi-
cates the AE that has received the valid association request along with an Association ID for the new
association. This Association ID is used to refer to this particular association in future calls. The
server application must either MC_Accept_Association() or MC_Reject_Association()
before DICOM messages can be exchanged over the association.

The server application detects when the client has released the association in the last message
received from the client. This will be discussed further in later sections dealing with DICOM mes-
sage exchange.

You also have the option of using the MC_Wait_For_Secure_Association() call. Use that func-
tion if you will be supplying additional code that will maintain a secure connection using a protocol
such as Secure Socket Layer (SSL) or Transport Layer Security (TLS). Refer to the Merge DICOM
Toolkit Reference Manual for more information about the MC_Wait_For_Secure_Associa-
tion() call.

Server Side Example of MC_Wait_For_Association():

status = MC_Wait_For_Association("Service_List_1", -1, &calledAppli-
cationID, &associationID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("\tError on MC_Wait_For_Association:\n");

 printf("\t\t%s\n", MC_Error_Message(status));

 printf("\t\tProgram aborted.\n");

 abort();

}

if(calledApplicationID != MyApplicationID)

{

 printf("\tUnexpected application identifier on MC_Wait_For_Asso-
ciation. \n");

 printf("\t\tProgram aborted.\n");

 abort();

}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

55© Copyright Merge Healthcare Solutions Inc. 2023

status = MC_Accept_Association(*associationID); if(status != MC_NOR-
MAL_COMPLETION)

{

 printf("\tError on MC_Accept_Association:\n");

 printf("\t\t%s\n",MC_Error_Message(status));

 return;

}

/*

*Handle message exchange here. It is during message

*exchange where you detect that the association has been

*closed and act accordingly

*/

MC_Wait_For_Connection

When using the MC_Wait_For_Connection() call in a server application, the time to wait is spec-
ified and a pointer to a socket variable is supplied. Upon successful completion, the socket for the
incoming connection is returned and must be passed to MC_Process_Association_Request(
) to actually process the connection. After MC_Wait_For_Connection() completes, a typical
server application will create a child thread or process to handle the incoming connection and
return back to calling MC_Wait_For_Connection() to wait for the next incoming association.

You also have the option of using the MC_Process_Secure_Association_Request() call for
processing secure associations. Use that function if you will be supplying additional code that will
maintain a secure connection using a protocol such as Secure Socket Layer (SSL) or Transport
Layer Security (TLS). Refer to the Merge DICOM Toolkit Reference Manual for more information
about the MC_Process_Secure_Association_Request() call.

Server Side Example of MC_Wait_For_Connection():

MC_SOCKET theSocket;

status = MC_Wait_For_Connection(-1, &theSocket); if(status != MC_NOR-
MAL_COMPLETION)

{

 printf("\tError on MC_Wait_For_Connection:\n");

 printf("\t\t%s\n", MC_Error_Message(status));

 printf("\t\tProgram aborted.\n");

 abort();

}

status = MC_Process_Association_Request(theSocket, "Service_List_1",
&calledApplicationID, &associationID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("\tMC_Process_Association_Request error:\n");

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

56© Copyright Merge Healthcare Solutions Inc. 2023

 printf("\t\t%s\n", MC_Error_Message(status));

 printf("\t\tProgram aborted.\n");

 abort();

}

if(calledApplicationID != MyApplicationID)

{

 printf("\tUnexpected application identifier on MC_Wait_For_Asso-
ciation.\n");

 printf("\t\tProgram aborted.\n");

 abort();

}

status = MC_Accept_Association(*associationID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("\tError on MC_Accept_Association:\n");

 printf("\t\t%s\n",MC_Error_Message(status));

 return;

}

/*

*Handle message exchange here. It is during message

*exchange where you detect that the association has been

*closed and act accordingly

*/

Querying the associations characteristics

Three additional functions: MC_Get_Association_Info(), MC_Get_First_Acceptable_Ser-
vice() and MC_Get_Next_Acceptable_Service() allow the client or server to query the char-
acteristics of an association. This is useful to a client, so that it knows what subset of services,
transfer syntaxes and DICOM roles that it proposed have been accepted and can now perform with
the server. Similarly, a server can look at characteristics of the association request (such as the net-
work node name of the client) and either accept or reject the association. See the Merge DICOM
Toolkit Reference Manual for a detailed description of these functions.

Using select to handle asynchronous events

In specialized cases where the server application is waiting on several asynchronous events, not just
the association event, the MC_Get_Listen_Socket() call can be made to request the file
descriptor for the DICOM listen socket. In this way the server application can do a select() sys-
tem call on this and other file descriptors. When the select returns with an event on the DICOM lis-
ten socket descriptor, the application can call MC_Wait_For_Association() and get an
immediate response.

Similarly, once the association is established, both the client and server applications can use the
MC_Get_Association_Info() call to get the file descriptor for the socket over which message

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

57© Copyright Merge Healthcare Solutions Inc. 2023

exchange will occur. Again, select() can be used to wait asynchronously for a DICOM request or
response message. This is discussed further in 4.8. MESSAGE EXCHANGE (NETWORK ONLY) ON
PAGE 81.

4.5. Negotiated Transfer Syntaxes (Network Only)
Merge DICOM Toolkit supports all currently approved standard and encapsulated DICOM transfer
syntaxes. Encapsulated transfer syntaxes require compression of the pixel data contained in the
message. These messages can be sent and received by the toolkit, although the toolkit will not do
the actual compression and decompression. Encoding of this pixel data is discussed below.

For DICOM Toolkit users, the toolkit allows for the negotiation of more than one transfer syntax for a
given DICOM service. This functionality is of most use for applications supporting encapsulated
transfer syntaxes. This functionality may be disabled by use of the ACCEPT_MULTIPLE_PRES_CON-
TEXTS configuration value. In order to understand how it is implemented, a more in depth descrip-
tion of DICOM association negotiation is required.

During association negotiation a client (SCU) application will propose a set of presentation contexts
over which DICOM communication can take place. Each presentation context consists of an
abstract syntax (DICOM service) and a set of transfer syntaxes that the client (SCU) understands.
The server (SCP) will typically accept a presentation context if it supports the abstract syntax and
one of the proposed transfer syntaxes.

As previously discussed, the abstract and transfer syntaxes supported by a server (SCP) are
defined through a service list contained in the Merge DICOM Toolkit Application Profile. When sup-
port within a server (SCP) is limited to the three non encapsulated DICOM transfer syntaxes, the
toolkit will transparently handle the use of multiple presentation contexts for a DICOM service.
However, when encapsulated DICOM transfer syntaxes are used, the server (SCP) must be able to
determine the transfer syntax of messages it receives so that it can properly parse the pixel data
contained in them. When a single presentation context is negotiated for a DICOM service, the
MC_Get_First_Acceptable_Service() and MC_Get_Next_Acceptable_Service() func-
tions can be used to determine the transfer syntax for a service. When more than one presentation
context is negotiated for a service, the MC_Get_Message_Transfer_Syntax() function must be
used to retrieve this transfer syntax. The following is a typical call to this function:

mc_Status = MC_Get_Message_Transfer_Syntax(ImageMsgID, &transferSyn-
tax);

Exchange of messages over the network is discussed further below.

Transfer Syntax Lists for SCUs

The presentation contexts supported for client (SCU) applications using Merge DICOM Toolkit are
also defined through the Merge DICOM Toolkit Application Profile. The following is a typical client
(SCU) configuration:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

58© Copyright Merge Healthcare Solutions Inc. 2023

In this case, the client (SCU) would propose the CT Image Storage service in a single presentation
context. The transfer syntaxes for each service are the three standard (non-encapsulated) DICOM
transfer syntaxes.

The following example is the configuration for a client (SCU) that supports more than one presenta-
tion context for a service:

[Acme_Store_SCP]

PORT_NUMBER = 104

HOST_NAME = acme_sun1

SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 2 # Number of Services

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_1

SERVICE_2 = STANDARD_CT

SYNTAX_LIST_2 = CT_Syntax_List_2

[CT_Syntax_List_1]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

[CT_Syntax_List_2]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes

SYNTAX_1 = IMPLICIT_LITTLE_ENDIAN

If a server (SCP) accepts both of these presentation contexts, the client (SCU) must use the
MC_Set_Message_Transfer_Syntax() function to specify which presentation context to send a
message over as follows:

mc_Status = MC_Set_Message_Transfer_Syntax(ImageMsgID, JPEG_BASE-
LINE);

Transfer Syntax Lists for SCPs

Server (SCP) applications are configured differently than client (SCU) applications. An SCP should
include all of the transfer syntaxes a service supports in a single transfer syntax list. If more than one
transfer syntax list is used for a service, server (SCP) applications will only support the transfer syn-
taxes contained in the first transfer syntax list. The following is an example configuration for a server
(SCP):

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services

SERVICE_1 = STANDARD_CT

SYNTAX_LIST_1 = CT_Syntax_List_SCP

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

59© Copyright Merge Healthcare Solutions Inc. 2023

[CT_Syntax_List_SCP]

SYNTAXES_SUPPORTED = 4 # Number of Syntaxes

SYNTAX_1 = JPEG_BASELINE

SYNTAX_2 = EXPLICIT_LITTLE_ENDIAN

SYNTAX_3 = IMPLICIT_LITTLE_ENDIAN

SYNTAX_4 = EXPLICIT_BIG_ENDIAN

As discussed previously, for server (SCP) applications, the order in which transfer syntaxes are
specified in a transfer syntax list dictates the priority Merge DICOM Toolkit places on them during
association negotiation. In this case, Merge DICOM Toolkit would select JPEG_BASELINE if pro-
posed, followed by EXPLICIT_LITTLE_ENDIAN, IMPLICIT_LITTLE_ENDIAN, and EXPLIC-
IT_BIG_ENDIAN.

Network message exchange is discussed further in one of the following sections.

4.6. Dynamic Service Lists
Service lists defined at runtime

In addition to defining service lists in the Application Profile, Merge DICOM Toolkit has mechanisms
to define service lists and transfer syntax lists at run-time. A number of functions exist to create
transfer syntaxes and service lists in various formats. The following example shows how to create
two transfer syntax lists and a service list.

TRANSFER_SYNTAX syntaxIds[3];

char *serviceList[3];

syntaxIds [0] = JPEG_BASELINE;

syntaxIds [1] = (TRANSFER_SYNTAX)0;

status = MC_NewSyntaxList("BASELINE", syntaxIds);

if(status != MC_NORMAL_COMPLETION)

 BadStatus(status);

syntaxIds[0] = EXPLICIT_LITTLE_ENDIAN;

syntaxIds[1] = IMPLICIT_LITTLE_ENDIAN;

syntaxIds[2] = (TRANSFER_SYNTAX)0;

status = MC_NewSyntaxList("DEFAULT", syntaxIds);

if(status != MC_NORMAL_COMPLETION)

 BadStatus(status);

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

60© Copyright Merge Healthcare Solutions Inc. 2023

status = MC_NewServiceFromName("CT_JPEG", "STANDARD_CT", "BASELINE",
0, 1);

if(status != MC_NORMAL_COMPLETION)

 BadStatus(status);

status = MC_NewServiceFromName("CT_DEFAULT", "STANDARD_CT",
"DEFAULT", 0, 1);

if(status != MC_NORMAL_COMPLETION)

 BadStatus(status);

serviceList[0] = "CT_JPEG";

serviceList[1] = "CT_DEFAULT";

serviceList[2] = 0;

status = MC_NewProposedServiceList("TEST_LIST1", serviceList);

if(status != MC_NORMAL_COMPLETION)

 BadStatus(status);

In this example, MC_NewSyntaxList() is used to create a transfer syntax list. This routine is
passed an array of transfer syntaxes that are placed in the list and the user specifies a name for the
syntax list. Similar to the creation of syntax lists in the application profile, the order in which transfer
syntaxes are defined in the list dictates the priority Merge DICOM Toolkit places on the transfer syn-
taxes when negotiating an association.

The MC_NewServiceFromName() routine is used to create individual services within a service list.
Each service in a dynamic service list must be created in this way. The MC_NewProposedSer-
viceList() routine can then be used to create a new service list consisting of services created
with MC_NewServiceFromName(). It is passed an array of pointers to the names of services to be
contained in the service list.

In addition to these functions, Merge DICOM Toolkit supplies a number of other routines for freeing
service lists that are created dynamically and for creating service lists. Please reference the Merge
DICOM Toolkit Reference Manual for further details on these functions.

4.7. Message Objects
The Merge DICOM Toolkit supplies several types of objects: application objects, association
objects, message objects, file objects, and item objects. Whenever you are given an ID (for example,
Application ID, AssociationID, MessageID, FileID, or ItemID), it is a handle to an instance of one of
these objects. Objects provide a convenient way for the toolkit to encapsulate related data while
hiding unnecessary details from the application developer. IDs also provide a convenient shorthand
when making calls to the Merge DICOM Toolkit that operate on or make use of these objects.

A majority of the functionality supplied with the DICOM Toolkit deals with building, parsing, valida-
tion, and exchange of DICOM messages, files, and items. Your applications deal with network mes-
sages in Merge DICOM Toolkit as message objects, and DICOM files as file objects. Item objects are
used for attributes that are of VR Sequence of Items (SQ) within both messages and files.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

61© Copyright Merge Healthcare Solutions Inc. 2023

This section deals with message objects, but many of these functions are polymorphic and also
work on file and item objects. These polymorphic functions will be called out in this section. Addi-
tional functions that are particular to file objects or item objects will be described in later sections.

Private attributes in both message and file objects are handled in ways similar to those discussed in
this section, but will also be described later in this document.

4.7.1. Building Messages

Opening a message

Before you can build a message, your application must create a message object using the
MC_Open_Message() function call. In this call, you specify a Service and Command name. The
DICOM Toolkit library uses these parameters to reference the proper message info file along with
the data dictionary and builds an unpopulated message object instance for your application to fill in.
This message object contains empty attributes. A Message ID is returned to your application that
identifies this message object.

Performance Tuning

An alternative method exists for creating an empty message object, MC_Open_Empty_Message(),
where a service and command are not specified. In this case, the message info and data dictionary
files are not referenced and an empty message object instance is opened. This message object
contains no attributes and the MC_Set_Service_Command() function must be called to set the
service and command for this message before it can be sent over the network. Since this approach
avoids accessing the message info files, it is more efficient. However, this approach also penalizes
you in terms of runtime error checking. This is discussed further later.

Filling a message with values

Once you have an open message object, use the MC_Set_Value family of functions to build your
message. This family of functions can be broken into five types based on their functionality as spec-
ified in the table below. Most of these functions have three parameters in common; a MsgItemID to
specify the message object, a Tag to specify the attribute whose value is being set, and a Value
being assigned to the attribute. See the Merge DICOM Toolkit Reference Manual for detailed speci-
fications of these functions.

MC_Set_Value functions are polymorphic

The MC_Set_Value family of functions also operate on DICOM file objects and item objects, since
both of these objects are also constructed of DICOM attributes.

Table 4.1: The MC_Set_Value Family of Functions

Function Type Description

MC_Set_Value...() Sets the first (and possibly only) value of an attribute in a message
object. There are ten functions of this type, the one you use
depends on the data type of the value you are assigning to the
attribute (e.g., string, short int, long int, long long, float, ...).

MC_Set_Next_Value...() Sets the next value of a multi-valued attribute in a message
object. There are ten functions of this type, the one you use
depends on the data type of the value you are assigning to the
attribute (e.g., string, short int, long int, long long, float, ...).

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

62© Copyright Merge Healthcare Solutions Inc. 2023

Both the MC_Set_Value and MC_Set_Next_Value function types have several variants depend-
ing on the data type of the variable from which you are assigning the value as shown in the table
below. These variants can be very helpful because they perform the necessary type conversion
from any reasonable ANSI-C data type to any compatible DICOM value representation. If a type
conversion is not reasonable (for example, from short int to LT), then MC_INCOMPATIBLE_VR
will be returned as an MC_STATUS code. Also, other error statuses will be returned if the conversion
was reasonable but the value stored in the variable made the conversion impossible (for example,
MC_INVALID_VALUE_FOR_VR, MC_VALUE_OUT_OF_RANGE,...).

Performance Tuning

If your message object was opened using MC_Open_Message(), the status code MC_IN-
VALID_TAG will be returned if you attempt to set the value of an attribute that is not a part of that
message object. This additional level of validation is lost if you use MC_Open_Empty_Message(),
since this opens an empty message object without any attributes to check against. Applications
where performance is critical may find it useful to use MC_Open_Message() during initial develop-
ment, and replace these calls with MC_Open_Empty_Message() later in the development cycle
after the implementation stabilizes.

Table 4.2: Acceptable MC_Set_Value/VR combinations

MC_Set_Value_To_NULL() Sets the value of an attribute in a message object to NULL. This
means that the attribute is included in the message but has a
NULL value.

MC_Set_Value_To_Empty() Clears the value of an attribute in a message object. This means
the attribute has no value and is not included in the message.

MC_Set_Value_From_Function() Specifies a function that is called repeatedly to set the value of an
attribute of VR OB, OW, OV, OL, OF, OD or UT (e.g., pixel data or
fixed width value) a 'chunk' at a time. These attributes tend to have
very large values.

NOTE: This callback function is different than the type of Call-
back Function registered using the MC_Register_-
Callback_Function(). For more information, see
4.10. USING CALLBACK FUNCTIONS ON PAGE 92.

MC Set Function Type Function may be used to set values of attributes with
these Value Representations

MC_Set_Value_From_ShortInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_UShortInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_Int DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_UInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_LongInt AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_ULongInt AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_LongLong AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_ULongLong AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

Function Type Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

63© Copyright Merge Healthcare Solutions Inc. 2023

An example of opening a message for the BASIC_FILM_SESSION - N-CREATE-RQ service-com-
mand pair, and setting a few of its attributes follows. Note that after the message is sent, the mes-
sage object is freed. Be sure to free message objects when your application is done with them. You
can keep an old message object around if you plan to reuse the message object often, and have the
available memory.

/*

*Send the Film Session Creation message

*/

status = MC_Open_Message(&messageID, "BASIC_FILM_SESSION", N_CRE-
ATE_RQ);

if(status != MC_NORMAL_COMPLETION)

{

 printf("Unable to open request message:\n");

 printf("\t%s\n", MC_Error_Message(status));

 return 1;

}

session_sop = "1.2.840.10008.5.1.1.1";

status = MC_Set_Value_From_String(messageID, 0x00000002, ses-
sion_sop);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_String failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Message(&messageID);

 MC_Abort_Association(&associationID);

 MC_Release_Application(&applicationID);

 return 1;

MC_Set_Value_From_Float DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_Double DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Set_Value_From_String AE, AS, AT, CS, DA, DS, DT, FD, FL, IS, LO, LT, PN, SH, SL, SS,
SV, ST, TM, UC, UI, UL, UR, US, UV, UT, SQ

MC_Set_Value_From_UnicodeString LO, LT, PN, SH, ST, UC, UT

MC_Set_Value_From_Function UNKNOWN_VR, OB, OW, OV, OL, OD, OF, AT, SS, US, SL, UL,
SV, UV, FL, FD, UR, UT

MC_Set_Value_From_Buffer UNKNOWN_VR, OB, OW, OV, OL, OD, OF, UR, UT

MC Set Function Type Function may be used to set values of attributes with
these Value Representations

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

64© Copyright Merge Healthcare Solutions Inc. 2023

}

session_uid = "1.2.840.10008.75.89";

status = MC_Set_Value_From_String(messageID, 0x00001000, Ses-
sion_uid);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_String failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Message(&messageID);

 MC_Abort_Association(&associationID);

 MC_Release_Application(&applicationID);

 return 1;

}

status = MC_Set_Value_From_String(messageID, MC_ATT_NUMBER_OF_COPIES,
"1");

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_String failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Message(&messageID);

 MC_Abort_Association(&associationID);

 MC_Release_Application(&applicationID);

 return 1;

}

/*

*Set other attributes here…

*/

status = MC_Send_Request_Message(associationID, messageID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Send_Request_Message failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Message(&messageID);

 MC_Abort_Association(&associationID);

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

65© Copyright Merge Healthcare Solutions Inc. 2023

 MC_Release_Application(&applicationID);

 return 1;

}

(void)MC_Free_Message(&messageID);

Supplying pixel data

When setting the value of an attribute with a value representation of OB or OW (for example, Pixel
Data), you can use the MC_Set_Value_From_Function(). Pixel Data tends to be very large and
normally you use this function to supply the data value a 'chunk' or block at a time.

As an example, your application could define a callback function MyPDSupplyFunction() whose
purpose is to supply Pixel Data. Pseudo-code for this function follows:

MC_STATUS MyPDSupplyFunction(int MsgID, unsigned long Tag, int
IsFirstCall, void *UserInfo, int *BlockSize, void **DataBlock, int
*IsLastBlock)

{

 if(IsFirstCall)

 {

 /*

*open pixel data source (e.g., file) here

*using Tag and/or *UserInfo as a guide.

*/

 if(OpenFailed)

 return(MC_CANNOT_COMPLY);

 }

 /*

* Read next chunk of pixel data from source

* into **DataBlock and set *BlockSize to the size of

* the chunk read in.

*/

 if(ReadFailed)

 return(MC_CANNOT_COMPLY);

 if(LastBlockRead)

 {

 /*

* close Pixel Data source here.

*/

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

66© Copyright Merge Healthcare Solutions Inc. 2023

 IsLastBlock = TRUE;

 }

 return(MC_NORMAL_COMPLETION);

}

This callback function is called by the Merge DICOM Toolkit Library only when triggered by your
application. For example, your application might use MyPDSupplyFunction to set the value of the
MC_ATT_PIXEL_DATA attribute (7FE0, 0010) as follows:

mcStatus = MC_Set_Value_From_Function(ImageMsgID, MC_ATT_PIXEL_DATA,
NULL, MyPDSupplyFunction);

On making this call, the toolkit library will repeatedly call back MyPDSupplyFunction() until it indi-
cates that all the pixel data has been read in without any errors. In this case no user data is passed
through to the callback function since *UserInfo is NULL.

Performance Tuning

Supplying the Pixel Data a block at a time is especially useful for very large Pixel Data and/or on plat-
forms with resource (for example, memory) limitations. In this case you would also want to set
LARGE_DATA_STORE to the value FILE in the Service Profile, and Merge DICOM Toolkit will store
the Pixel Data value in a temporary file.

If your application runs on a resource rich system, you should set LARGE_DATA_STORE to the value
MEM in the Service Profile, and Merge DICOM Toolkit will keep the Pixel Data values in the message
object stored in memory rather than using temporary files. This should improve performance. Also,
in this case you may want your callback function to supply the Pixel Data in fewer big blocks (or one
large block).

While MyPDSupplyFunction() is a callback function in this example, it is not what is being
referred to when we discuss Callback Functions (with a capital 'C' and capital 'F') in Merge DICOM
Toolkit. Callback Functions are another even more powerful way to handle large OB or OW data and
are discussed later.

4.7.2. Parsing Messages

When your AE receives a DICOM message, it will most often need to examine the values contained
in the message attributes to perform an action (for example, store an image, print a film, change
state…). If your application is a server, the message conveys the operation your server should per-
form and the data associated with the operation. If your application is a client, the message may be
a response message from a server on the network resulting from a previous request message to
that same server.

Reading values from a message

Once you have received a message object, use the MC_Get_Value family of functions to parse your
message. This family of functions can be broken into five types based on their functionality as spec-
ified in the table below. Most of these functions have three parameters in common; a MsgItemID to
specify the message object, a Tag to specify the attribute whose value is being fetched, and a Value
variable to which the value stored in the attribute is assigned. See the Merge DICOM Toolkit Refer-
ence Manual for detailed specifications of these functions.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

67© Copyright Merge Healthcare Solutions Inc. 2023

MC_Get_Value functions are polymorphic

The MC_Get_Value family of functions also operate on DICOM file objects and item objects, since
both of these objects are also constructed of DICOM attributes.

Table 4.3: The MC_Get_Value Family of Functions

Both the MC_Get_Value and MC_Get_Next_Value function types have several variants depend-
ing on the data type of the variable to which you are assigning the retrieved value (see the table
below). These variants can be very helpful because they perform the necessary type conversion
from any DICOM value representation to any compatible ANSI-C data type. If a type conversion is
not reasonable (for example, from LT to short int) then MC_INCOMPATIBLE_VR will be returned
as an MC_STATUS code. Also, other error statuses will be returned if the conversion was reasonable
but the value stored in the attribute of the message made the conversion impossible (for example,
MC_INVALID_VALUE_FOR_VR, MC_VALUE_OUT_OF_RANGE,…).

Table 4.4: Acceptable MC_Get_Value/VR combinations

Function Type Description

MC_Get_Value_Count() Returns the number of values assigned to an attribute in a message
object. Multi-valued attributes can have more than one value
assigned to them.

MC_Get_Value_Length() Returns the length of attribute's value in bytes.

MC_Get_Value...() Gets the first (and possibly only) value of an attribute in a message
object. There are eleven functions of this type, the one you use
depends on the data type of the variable to which you are assigning
to the attribute's value (for example, string, short int, long int, long
long, float, …).

MC_Get_Next_Value...() Gets the next value of a multi-valued attribute in a message object.
There are eleven functions of this type, the one you use can depend
on the data type of the value you are assigning to the attribute (e.g.,
string, short int, long int, long long, float, …).

MC_Get_Value_To_Function() Specifies a function that is called repeatedly to get the value of an
attribute of VR OB, OW, OL, OF, OD, SL, SS, UL, US, AT, FL, FD, UN
or UT (e.g., pixel data or fixed width value) a 'chunk' at a time. These
attributes tend to have very large values.
Note: This callback function is different than the type of Callback
Function registered using MC_Register_Callback_Function().
For more information, see 4.10. USING CALLBACK FUNCTIONS ON
PAGE 92.

MC_Get function type Function may be used to retrieve values from attributes
with these Value Representations

MC_Get_Value_To_ShortInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_UShortInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_Int DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_UInt DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_LongInt AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

68© Copyright Merge Healthcare Solutions Inc. 2023

NOTE: The same table of acceptable conversions applies for the MC_Get_Next_Value_To...,
MC_Get_pValue_To... and MC_Get_Next_pValue_To... families of functions.

The user should be aware that, while the toolkit makes reasonable efforts to ensure correct conver-
sions between data representations, the MC_Get_Value_To... functions should be used with cau-
tion in some circumstances.

For instance, loss of precision is possible when MC_Get_Value_To_String is called to return the
value of a float or a double attribute as a string. Let's assume the value of the attribute (of VR=FL) is
123.456789. Internally, the toolkit converts the value to string using the %g format specification. The
returned result is the “123.457” string (the rounded value with the default precision).

A better approach in this case would be to retrieve the attribute in its native representation using
MC_Get_Value_To_Float and then convert it to string outside of the toolkit, using the desired
precision.

A special purpose function exists in the MC_Get_Value family, called MC_Get_Value_To_Buf-
fer(). This function is only used to retrieve the value of a binary attribute or an attribute whose
value representation is unknown.

Below is an example of parsing attributes from a
PATIENT_STUDY_ONLY_QR_FIND_RETIRED - C-FIND-RQ message.
This example reads in attributes that may contain query values. The application could use these
values to query its own database and send a response message(s) with one or more matches. See
the Query/Retrieve section in the Sample Application Guide for further details. Note that your
application should free the message object when done using it.

/* Example of parsing a C-FIND-RQ Message */

/* First is Patient ID */

status = MC_Get_Value_To_String(FindMessageID, MC_ATT_PATIENT_ID, 64,
PatientID);

/* Next is Patient name */

MC_Get_Value_To_UlongInt AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_LongLong AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_UlongLong AT, DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_Float DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_Double DS, FD, FL, IS, SL, SS, SV, UL, US, UV, SQ

MC_Get_Value_To_String AE, AS, AT, CS, DA, DS, DT, FD, FL, IS, LO, LT, PN, SH, SL, SS,
SV, ST, TM, UC, UI, UL, UR, US, UV, UT, SQ

MC_Get_Value_To_Unicode String LO, LT, PN, SH, ST, UC, UT

MC_Get_Value_To_Function UNKNOWN_VR, OB, OW, OV, OL, OD, OF, AT, SS, US, SL, UL,
SV, UV, FL, FD, UR, UT

MC_Get_Value_To_Buffer UNKNOWN_VR, OB, OW , OV, OL, OD, OF, UR, UT

MC_Get function type Function may be used to retrieve values from attributes
with these Value Representations

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

69© Copyright Merge Healthcare Solutions Inc. 2023

status = MC_Get_Value_To_String(FindMessageID, MC_PATIENTS_NAME, 64,
szPatientName);

/* Next is patient's birth date */

status = MC_Get_Value_To_String(FindMessageID, MC_PATIENTS_BIRTH_-
DATE, 8, szPatientBdate);

/* Finally, patient's sex */

status = MC_Get_Value_To_String(iMessageID, MC_PATIENTS_SEX, 16,
szPatientSex);

/*

* Now you can perform a search in your database for

* matches for the attributes read in, and send the proper

* response messages.

*/

/* We're through with the message: free it up */

status = MC_Free_Message(&iMessageID);

Retrieving pixel data

When retrieving the value of an attribute with a value representation of OB or OW (for example, Pixel
Data) you can use the MC_Get_Value_To_Function(). Pixel Data tends to be very large and nor-
mally you use this function to read the data value a 'chunk' or block at a time. This function is the
complement to the MC_Set_Value_From_Function() described in the last section.

As an example, your application could define a callback function MyPDStoreFunction() whose
purpose is to store Pixel Data to an external data sink so that your application uses less primary
memory. Pseudo-code for this function follows:

MC_STATUS MyPDStoreFunction(int MsgID, unsigned long Tag, void *User-
Info, int BlockSize, void *DataBlock, int IsFirstCall, int IsLast-
Block)

{

 if(IsFirstCall)

 {

 /*

*open pixel data sink (e.g., file) here

*using Tag and/or *UserInfo as a guide.

*/

 if(OpenFailed)

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

70© Copyright Merge Healthcare Solutions Inc. 2023

 return(MC_CANNOT_COMPLY);

 }

 /*

* Take this chunk of pixel data from DataBlock

* and store it to the pixel data sink.

*/

 if(StoreFailed)

 return(MC_CANNOT_COMPLY);

 if(isLastBlock)

 {

 /*

*close Pixel Data sink here.

*/

 }

 return(MC_NORMAL_COMPLETION);

}

This callback function is called by the Merge DICOM Toolkit Library only when triggered by your
application. For example, your application might use MyPDStoreFunction to retrieve the value of
the MC_ATT_PIXEL_DATA attribute (7FE0, 0010) as follows:

mcStatus = MC_Get_Value_To_Function(ImageMsgID, MC_ATT_PIXEL_DATA,
NULL, MyPDStoreFunction);

On making this call, the toolkit library will repeatedly call back MyPDStoreFunction() until all the
pixel data has been read from the message object without any errors. In this case, no user data is
passed through to the callback function since *UserInfo is NULL.

Performance Tuning

Storing or 'setting aside' Pixel Data a block at a time is especially useful for very large Pixel Data and/
or on platforms with resource (for example, memory) limitations. In this case, you would also want to
set LARGE_DATA_STORE to the value FILE in the Service Profile, so that Merge DICOM Toolkit will
also maintain the pixel data value stored in the message object itself in a temporary file.

If your application runs on a resource rich system, you should set LARGE_DATA_STORE to the value
MEM in the Service Profile, and Merge DICOM Toolkit will keep the pixel data values in the message
object stored in memory rather than using temporary files. This should improve performance. Also,
in this case you may want your callback function to store the Pixel Data in fewer big blocks (or one
large block) and keep them in primary memory for rapid access.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

71© Copyright Merge Healthcare Solutions Inc. 2023

Once again, while MyPDStoreFunction() is a callback function in this example, it is not what is
being referred to when we discuss Callback Functions (with a capital 'C' and capital 'F') in Merge
DICOM Toolkit. Callback Functions are discussed later.

4.7.3. 8-bit Pixel Data

For DICOM's Implicit VR Little Endian transfer syntax, the pixel data attribute's (7fe0,0010) VR is
specified as being OW (independent of what the bits allocated and bits stored attributes are set to).
To reduce confusion, Merge DICOM Toolkit sets the VR of pixel data for the other non-encapsulated
transfer syntaxes to OW.

When retrieving or setting pixel data with the MC_Get_Value_To_Function() and MC_Set_Val-
ue_From_Function() calls, the toolkit assumes that the OW pixel data is encoded in the host sys-
tem's native endian format as defined by DICOM. The figure below describes how 8-bit pixel data is
encoded in an OW buffer for both big and little endian formats.

The DICOM standard specifies that the first pixel byte should be set to the least significant byte of
the OW value. The next pixel byte should be set to the most significant byte of the OW value. This
implies that on big endian machines, 8-bit pixel data is byte-swapped from the OB encoding
method. To make dealing with 8-bit pixel data easier on big endian machines, the toolkit has the
function MC_Byte_Swap_OBOW(). This function byte swaps OW data word by word. This function
can be called after setting or before retrieving pixel data.

4.7.4. Encapsulated Pixel Data

Merge DICOM Toolkit supports handling of single frame and multi-frame pixel data in encapsulated
transfer syntaxes, dealing with it in the same manner as standard pixel data by using the following
calls:

MC_Set_Encapsulated_Value_From_Function()

MC_Set_Next_Encapsulated_Value_From_Function()

MC_Close_Encapsulated_Value()

MC_Get_Encapsulated_Value_To_Function()

MC_Get_Next_Encapsulated_Value_To_Function()

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

72© Copyright Merge Healthcare Solutions Inc. 2023

MC_Get_Frame_To_Function()

Merge DICOM Toolkit will encode supplied data in an encapsulated format and generate the basic
offset table. The data of basic offset table could be retrieved using call:

MC_Get_Offset_Table_To_Function()

Merge DICOM Toolkit will provide data without the encapsulation delimiters. The data can be com-
pressed or decompressed using a registered compression and decompression callbacks. Registra-
tion of compression callbacks is described later in this document. Compression libraries are also
included on several platforms, including Windows, Sun Solaris and Linux.

An example of encapsulated pixel data is illustrated in the table below.

Table 4.5: Sample Encapsulated Pixel Data.

As specified by the DICOM standard, the various elements shown in the table above, excluding the
compressed pixel data fragments, are encoded in little endian format. The compressed pixel data
fragments are treated as OB, and thus do not have an endian. The following figure contains the
sample pixel data of TABLE 4.5: SAMPLE ENCAPSULATED PIXEL DATA. ON PAGE 72 in little endian for-
mat.

Further examples of encapsulated pixel data encoding are contained in Part 5 of the DICOM stan-
dard.

Pixel Data Element

Basic Offset Table
with NO Item
Value

First Fragment (Single Frame) of
Pixel Data

Second Fragment (Single Frame)
of Pixel Data

Sequence Delimiter
Item

Item
Tag

Item
Length

Item
Tag

Item
Length

Item Value Item
Tag

Item
Length

Item Value Sequence
Delim. Tag

Item
Length

(FFFE,
E000)

0000
0000H

(FFFE,
E000)

0000
04C6H

Compressed
Fragment

(FFFE,
E000)

0000
024AH

Compressed
Fragment

(FFFE,
E0DD)

0000
0000H

4 bytes 4 bytes 4 bytes 4 bytes 04C6H bytes 4 bytes 4 bytes 024A H bytes 4 bytes 4 bytes

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

73© Copyright Merge Healthcare Solutions Inc. 2023

4.7.5. Icon Image Sequences

The Icon Image Sequence can contain small "thumbnail" images. This sequence also contains the
Pixel Data Tag (7FE0,0010) just like the main message. Because this may or may not be com-
pressed, some special considerations are necessary.

Sending on the network, writing a file, or writing a stream

1. Message is uncompressed, Icon is uncompressed.

There is no user intervention required. An association will negotiate one of the unencapsulated
transfer syntaxes, and both the image and the icon_image will be sent as the negotiated unen-
capsulated transfer syntax.

2. Message is compressed, Icon is uncompressed.

There is no user intervention required. An association will negotiate one of the encapsulated
transfer syntaxes, and the image will be sent in this encapsulated transfer syntax, and the
icon_image will be sent EXPLICIT_LITTLE_ENDIAN. EXPLICIT_LITTLE_ENDIAN is the
default syntax for the non-pixel data portion of a message (including nested pixel data) when
the “main” pixel data is encapsulated.

3. Message is compressed, Icon is compressed.

Minor intervention is required.

Special creation of icon:

The only difference is that MC_Set_Message_Transfer_Syntax(sqID, <encapsulated
transfer syntax>) must now be called upon creation of the ICON_IMAGE item so that you
may register compression callbacks and utilize them.

Reading from network, a file, or a stream

No special conditions are required if the image is streamed in via MC_Open_File(),
MC_Read_Message(), or MC_Stream_To_Message(). The sequence item automatically assumes:

EXPLICIT_LITTLE_ENDIAN if the pixel data contained in ICON_IMAGE is of defined length

-OR-

transfer syntax of the parent if the pixel data contained in ICON_IMAGE is of undefined length.

MC_Duplicate_Message

If duplicating from an unencapsulated to an encapsulated (compressed) transfer syntax, then the
icon will be unencapsulated by default. To change the behavior, set DUPLICATE_ENCAPSULAT-
ED_ICON to Yes in the mergecom.pro file. This can be done dynamically (at run-time) via MC_Set_-
Bool_Config_Value().

4.7.6. Validating Messages

Once your application has a populated message object, either one that you have built or one that
you have received and are about to parse, Merge DICOM Toolkit supplies DICOM Toolkit DICOM
message validation functionality. The MC_Validate_Message() function will validate the specified
message object instance against the DICOM Standard's specification for that service-command
pair.

A file object validation function, MC_Validate_File(), also exists in the toolkit and will be dis-
cussed further in a later section.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

74© Copyright Merge Healthcare Solutions Inc. 2023

message.txt can be extremely useful

Another file supplied with Merge DICOM Toolkit is the message.txt file. This file contains a listing
of all the messages supported by the toolkit and the parameters they are validated against. mes-
sage.txt is a useful guide in your application development because it specifies the attributes that
can make up the object instance portion of each message type (service-command pair) and is
often easier to use as a quick reference than paging through two or three parts of the DICOM Stan-
dard. message.txt also specifies the contents of items and files. For more information, see 4.11.
SEQUENCES OF ITEMS ON PAGE 95 and 4.12. DICOM FILES ON PAGE 99. Remember though that the
DICOM Standard is the final word and that message.txt has its limitations as described further
below.

MC_Validate_Message() does not validate the attributes that make up the command portion of a
DICOM message. Command attributes (attributes with a group number less than 0008) are also not
specified in message.txt. The Merge DICOM Toolkit Library sets as many of the command group
attributes as possible automatically. In some services, your application will need to set command
attributes (for example, the 'Affected SOP Class UID' attribute (0000,0002) in the C-MOVE response
message). These special cases are described further in the Application Guides and in Part 7 of the
DICOM Standard.

An excerpt of message.txt follows for the service-command pair DETACHED_ PATIENT_ MAN-
AGEMENT - N_ GET_ RSP as an illustration. For each attribute in the message, at least one line of
data is specified. This first line includes the tag, attribute name, value representation, and value type.
Additional lines may be included for the attribute to list conditions, enumerated values, defined
terms, and item names for attributes with a VR of SQ. You should refer to the DICOM Standard
(parts 3 and 4) for a detailed description of particular conditions and their meanings.

###

DETACHED_PATIENT_MANAGEMENT - N_GET_RSP

###

0008,0005 Specific Character Set CS 1C

Condition: EXTENDED_OR_REPLACEMENT_CHARACTER_SET_USED

Defined Terms: ISO_IR 100, ISO_IR 101, ISO_IR 109, ISO_IR 110,
ISO_IR 144, ISO_IR 127, ISO_IR 126, ISO_IR 138, ISO_IR 148, ISO_IR
166, ISO_IR 13, ISO 2022 IR 6, ISO 2022 IR 100, ISO 2022 IR 101,
ISO 2022 IR 109, ISO 2022 IR 110, ISO 2022 IR 144, ISO 2022 IR 127,
ISO 2022 IR 126, ISO 2022 IR 138, ISO 2022 IR 148, ISO 2022 IR 149,
ISO 2022 IR 166, ISO 2022 IR 13, ISO 2022 IR 87, ISO 2022 IR 159,
ISO_IR 192, GB18030

0008,1110 Referenced Study Sequence SQ 2

Item Name(s): REF_STUDY

0008,1125 Referenced Visit Sequence SQ 2

Item Name(s): REF_VISIT

0010,0010 Patient's Name PN 2

0010,0020 Patient ID LO 2

0010,0021 Issuer of Patient ID LO 3

0010,0030 Patient's Birth Date DA 2

0010,0032 Patient's Birth Time TM 3

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

75© Copyright Merge Healthcare Solutions Inc. 2023

0010,0040 Patient's Sex CS 2

Enumerated Values: M,F,O

0010,0050 Patient's Insurance Plan Code Sequence SQ 3

Item Name(s): CODE_SEQUENCE_MACRO

0010,1001 Other Patient Names PN 3

0010,1005 Patient's Birth Name PN 3

0010,1020 Patient's Size DS 3

0010,1040 Patient's Address LO 3

0010,1060 Patient's Mother's Birth Name PN 3

0010,1080 Military Rank LO 3

0010,1081 Branch of Service LO 3

0010,2000 Medical Alerts LO 3

0010,2110 Allergies LO 3

0010,2150 Country of Residence LO 3

0010,2152 Region of Residence LO 3

0010,2154 Patient's Telephone Numbers SH 3

0010,2160 Ethnic Group SH 3

0010,21A0 Smoking Status CS 3

Enumerated Values: YES,NO,UNKNOWN

0010,21B0 Additional Patient History LT 3

0010,21C0 Pregnancy Status US 3

Enumerated Values: 0001,0002,0003,0004

0010,21D0 Last Menstrual Date DA 3

0010,21F0 Patient's Religious Preference LO 3

0010,4000 Patient Comments LT 3

0038,0004 Referenced Patient Alias Sequence SQ 2

Item Name(s): REF_PATIENT_ALIAS

0038,0050 Special Needs LO 3

0038,0500 Patient State LO 3

What validation can do for you...

While Merge DICOM Toolkit's validation is not foolproof, it is very useful and will catch many stan-
dard violations. It validates the following:

● That the value assigned to an attribute is appropriate for that attributes VR.

● That all value type 1 attributes have a value, and that value is not null.

● That all value type 2 attributes have a value, and that value may be null.

● That a specified set of conditional attributes (value type 1C or 2C) are validated as value type 1 or
2 attributes when the specified condition is satisfied.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

76© Copyright Merge Healthcare Solutions Inc. 2023

● That an attribute does not have too many or too few values for its specified value multiplicity.

● That an attribute that has enumerated values does not have a value that is not one of the enu-
merated values. A warning is also issued if an attribute that has defined terms has a value that is
not one of those defined terms.

● That a non-private attribute is not included in the message that is not defined for that DICOM
message (service-command pair).

and what validation cannot do for you

As mentioned, Merge DICOM Toolkit does not capture all standard violations, and the DICOM Stan-
dard itself should be considered the final word when validating a message. Important limitations of
Merge DICOM Toolkit validation include:

● DICOM Part 3 specifies Information Object Definitions (IODs) as being composed of modules.
Each module contains attributes. Only in the case of composite IODs may an attribute be spec-
ified in DICOM Part 3 as being contained in either a User Optional or Conditional Module. Merge
DICOM Toolkit treats all such attributes as being value type 3 (optional).

● Also, only in the case of composite IODs (e.g., Ultrasound Image Object) used in storage ser-
vices, may certain modules be mutually exclusive (e.g., curve and overlay modules). The attri-
butes defined in these modules are all treated as type 3.

● For normalized services using the N-EVENT-REPORT command, the actual contents of an N-
EVENT-REPORT message are dependent on the Event Type ID being communicated. Merge
DICOM Toolkit treats all Event Type IDs identically when performing message validation; namely
it treats all attributes as type 3.

An example...

An example of the use of MC_Validate_Message() follows

status = MC_Validate_Message(iMessageID, &error_info, Validation_Lev-
el1);

if(status == MC_DOES_NOT_VALIDATE)

{

 printf("MC_Validate_Message tag: %lx error: %s", error_info->Tag,
MC_Error_Message(error_info->Status));

 /*

* you may want to abort the association in this

* case as follows:

* MC_Abort_Association(&associationID);

*/

}

In this example, the application validates the message object iMessageID at Validation_Level1
that reports only errors. Validation_Level2 could be used to report both warnings and errors,
while Validation_Level3 could be used to report errors, warnings, and informational messages.
If the status returned is anything other than MC_MESSAGE_VALIDATES, your application can look
at the error_info structure passed back to decipher the violation. error_info is defined as fol-
lows:

* ===

*Structure containing Message Validation

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

77© Copyright Merge Healthcare Solutions Inc. 2023

*Error Information

* ===+*/

typedef struct ValErr_struct

{

 unsigned long Tag; /* Tag with validation error */

 int MsgItemID; /* ID of message or item object containing the
tag*/

 int ValueNumber; /* Value number involved - zero if error is not
value related */

 MC_STATUS Status; /* Error status code */

} VAL_ERR;

In this example, the offending attribute's tag is printed out along with the error string associated with
Status. If the image object violates DICOM the output to standard output in this example might
look like the following:

MC_Validate_Message tag: 101010 error: Invalid value for this tag's
VR

This output states that the attribute (0010,1010) in the message has a value that violates the value
representation for that attribute. If the application wished to go on to find other errors in the same
message, it would call MC_Get_Next_Validate_Error() until the status returned equals
MC_END_OF_LIST, meaning that no more errors exist in the message.

It is on the initial call to MC_Validate_Message() that all the validation takes place and that the
results of the validation for the entire message are logged to the message log file. Subsequent calls
to MC_Get_Next_Validate_Error() simply step through the results of the validation, passing
additional errors found back to the application. In the above example the message log file contains
the following report:

example log file

01-11 13:52:09.00 7919 MCserver(process_messages) T4: Processing a
C_STORE_RQ request

01-11 13:52:09.00 7919 MC3 T5: (0008,0005) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0008,0023) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0008,0033) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0010,1010) VE: [41Y] Invalid value
for tag's VR

01-11 13:52:09.00 7919 MC3 T5: (0018,0010) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0015) VE: Required attribute has
no value

01-11 13:52:09.00 7919 MC3 T5: (0018,0020) VW: Invalid attribute for
service

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

78© Copyright Merge Healthcare Solutions Inc. 2023

01-11 13:52:09.00 7919 MC3 T5: (0018,0021) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0022) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0023) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0050) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0080) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0081) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0082) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0084) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0085) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,0091) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1041) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1060) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,1250) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0018,5101) VE: Required attribute has
no value

01-11 13:52:09.00 7919 MC3 T5: (0020,0032) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0037) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0052) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,0060) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0020,1040) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0020,1041) VW: Invalid attribute for
service

01-11 13:52:09.00 7919 MC3 T5: (0028,0006) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,0030) VW: Invalid attribute for
service

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

79© Copyright Merge Healthcare Solutions Inc. 2023

01-11 13:52:09.00 7919 MC3 T5: (0028,0034) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1101) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1102) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1103) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1201) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1202) VI: Unable to check condi-
tion

01-11 13:52:09.00 7919 MC3 T5: (0028,1203) VI: Unable to check condi-
tion

Notice in this log file that all warnings and informational messages are also logged. This is always the
case, although the first violation returned to the application was an error because Valida-
tion_Level1 was specified. The message log agrees in that the first VE (Validation Error) logged is
for the attribute Patient's Age (0010,1010). The log states that the message contains “41Y” as the
value for this attribute. Part 6 of DICOM clearly states that this attribute has a value representation of
AS (Age String) and part 5 states that for this VR the value should have a leading zero and be repre-
sented as “041Y”. There is also one other error flagged in this message. The required attribute View
Position (0018,5101) had no value.

Many more details relating to the usage and behavior of MC_Validate_Message() and
MC_Get_Next_Validate_Error() can be found in the Merge DICOM Toolkit Reference Manual.

Performance Tuning

DICOM message validation does involve processing overhead. The most significant overhead is in
the accessing of the message info files, and significantly less overhead is involved in actually validat-
ing the contents of the message structure. It is important to understand that depending on the way
in which your message object was created, this validation overhead can occur at different points in
your application; see the table below.

Table 4.6: Point of performance overhead associated with message validation

Using MC_Open_Message() has an up-front performance cost but provides additional validation
as you set the value of attributes in the message object. For the other two creation methods, the
cost occurs on validation itself.

Many times, MC_Validate_Message() is selectively used in an application as a runtime option or
conditionally compiled into the source code. Validation might only be used during integration test-
ing or in the field for diagnostic purposes. Reasons for this include performance since the overhead

Message Object Creation Method Point at which file access overhead for validation occurs

MC_Open_Message() MC_Open_Message()

MC_Open_Empty_Message() MC_Validate_Message()

NOTE: You must use MC_Set_Service_Command() before vali-
dating and/or sending a message created in this manner.

MC_Read_Message() MC_Validate_Message()

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

80© Copyright Merge Healthcare Solutions Inc. 2023

associated with message validation may be an issue, especially for larger messages having many
attributes or on lower-end platforms. Also, validation can clutter the message log with warnings and
errors that may not be desirable in a production environment. Performance issues related to mes-
sage handling are discussed further under Message Exchange later in this document.

4.7.7. Streaming Messages

When DICOM messages are exchanged over a network, they are in an encoded format specified by
the DICOM standard and the negotiated transfer syntax. Merge DICOM Toolkit calls this encoded
format a message stream and supplies powerful functions that allow your applications to work
directly with message streams.

When your application builds or parses messages as described earlier, it works with a Merge
DICOM Toolkit message object. This message object abstracts and encapsulates the DICOM mes-
sage and hides its details from the developer. When you send the DICOM message object over the
network, Merge DICOM Toolkit internally creates a DICOM message stream that is passed over the
network. This message stream is an encoded stream of bytes that follows all the rules of DICOM.

Merge DICOM Toolkit also supplies function calls to the developer to generate and read DICOM
message streams directly, as illustrated in the figure below. MC_Message_To_Stream() converts a
message object to a message stream, while MC_Stream_To_Message() converts a message
stream into a message object. Also, MC_Get_Stream_Length() is supplied to calculate the length
of the DICOM stream that would result from using the MC_Message_To_Stream() call.

A call to MC_Message_To_Stream() could look like the following:

Status = MC_Message_To_Stream(MyMessageID, 0x00080000, 0x7FDFFFFF,
EXPLICIT_LITTLE_ENDIAN, NULL, MyStreamHandler);

This call converts the attributes from (0008,0000) through (7FDF,FFFF) in the message object iden-
tified by MyMessageID into a DICOM message stream using the explicit little endian transfer syntax.
Explicit little endian transfer syntax is one of the three DICOM Transfer Syntaxes supported by
Merge DICOM Toolkit. DICOM defines two other transfer syntaxes: implicit little endian (the default
DICOM transfer syntax) and explicit big endian. See Part 5 of the DICOM Standard for a detailed
description of transfer syntaxes.

MyStreamHandler() is a callback function you supply in your application that receives and man-
ages the stream data a block at a time. This callback function is similar to the example in
MC_Get_Value_To_Function() except that it handles a message stream rather than Pixel Data.
See the API description in the Merge DICOM Toolkit Reference Manual for further details.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

81© Copyright Merge Healthcare Solutions Inc. 2023

Once your application has done the above and stored the stream somewhere, you could later
rebuild a message object containing only group 0008 using:

Status = MC_Stream_To_Message(MyMessageID, 0x00080000, 0x0008FFFF,
EXPLICIT_LITTLE_ENDIAN, NULL, MyStreamProvider);

This call converts only the attributes in group 0008 of the stream supplied by your callback function
MyStreamProvider() and places them in the message identified by MyMessageID. It is important
that the transfer syntax specified in this call is identical to that used to create the stream or the call
will fail with an error.

Performance Tuning

The same kind of performance issues apply in the callback functions discussed above as in those
callbacks used with MC_Get_Value_To_Function() and MC_Set_Value_From_Function().
Namely, your setting of LARGE_DATA_STORE should take into consideration the capabilities of your
platform.

Message streams can be very valuable to your application for debugging and validation purposes.
By writing DICOM message streams out to a binary file, you have a compact and reproducible rep-
resentation of a message. You can directly examine the binary message stream to see how the data
would be sent over the network. Also, you can read this binary file in again later to reconstruct the
original message object. Once you have the message object you can use the usual toolkit functions
to examine or alter its contents.

Deflated Streams

The transfer syntax, Deflated Explicit VR Little Endian, gives you the ability to use the “deflate” algo-
rithm to compress the entire data set. This transfer syntax was added mostly for structured reports,
which are extremely redundant in their encoding, with considerable repetition of strings and tags.
The toolkit uses zlib to implement deflate/inflate. This is an open source library that is built into the
toolkit. Messages of this transfer syntax are still stored as message objects while the toolkit is han-
dling them. Only when a message is “streamed” is the message deflated/inflated.

4.8. Message Exchange (Network Only)

4.8.1. General

We have discussed how associations are managed as well as how messages objects are populated
and parsed. Now we'll discuss how these DICOM messages are exchanged with other application
entities over the network.

The exchange of DICOM messages between AEs only occurs over an open association. After the
DICOM client (SCU) application opens an association with a DICOM server (SCP), the client sends
request messages to the server application. For each request message, the client receives back a
corresponding response from the server. The server waits for a request message, performs the
desired service, and sends back some form of status to the client in a response message. This pro-
cess, along with the corresponding Merge DICOM Toolkit Function calls, are pictured in the figure
below.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

82© Copyright Merge Healthcare Solutions Inc. 2023

These three calls have the following form:

status = MC_Send_Request_Message(AssociationID, RequestMessageId);

status = MC_Send_Response_Message(AssociationID, ResponseStatus,
ResponseMessageID);

status = MC_Read_Message(AssociationID, Timeout, &MessageID, &Servi-
ceName, &Command);

Sending Messages

The parameters to MC_Send_Request_Message() and MC_Send_Response_Message() include
an AssociationID identifying the open association over which the message is to be sent and a
MessageID identifying the message object to be sent. The MC_Send_Response_Message() call
includes one additional parameter, ResponseStatus, that must be set to a valid DICOM response
status (#defined in mergecom.h). Example response status codes for the N_GET_RSP response
message are summarized in the table below. Response codes for other DICOM commands are
described in Part 4 of the DICOM Standard.

Table 4.7: Valid Response Message Status Codes for an N-GET Command

N_GET_RSP Status Codes

N_GET_SUCCESS

N_GET_WARNING_OPT_ATTRIB_UNSUPPORTED

N_GET_ATTRIBUTE_LIST_ERROR

N_GET_CLASS_INSTANCE_CONFLICT

N_GET_DUPLICATE_INVOCATION

N_GET_MISTYPED_ARGUMENT

N_GET_NO_SUCH_SOP_CLASS

N_GET_NO_SUCH_SOP_INSTANCE

N_GET_PROCESSING_FAILURE

N_GET_RESOURCE_LIMITATION

N_GET_UNRECOGNIZED_OPERATION

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

83© Copyright Merge Healthcare Solutions Inc. 2023

Receiving Messages

When your application makes an MC_Read_Message() call, the AssociationID parameter spec-
ifies the association over which you wish to read the message. The MessageID returned to you
identifies the message received. The message's Service and Command are also returned to your
application to aid it in further processing.

The other important parameter in an MC_Read_Message() call is Timeout. Timeout specifies, in
seconds, how long your process will wait for a message before the MC_Read_Message() call times
out and returns control to your application code. If your application is running in a multi-tasking
environment, your process will be blocked during this waiting period and the system processor will
be available for other processes. Setting Timeout to 0 is equivalent to polling, since MC_Read_Mes-
sage() returns immediately, whether a message has been received or not. A Timeout of -1 indi-
cates wait forever, or until a message arrives, before returning.

Message Exchange with Callbacks

Functions MC_Send_Request, MC_Send_Response and MC_Read_To_Stream provide the same
functionality as their message analogs, but allow to utilize the Callback mechanism for message
exchange. This might be especially useful for large data transfers, as the data are not loaded into
application memory, but instead are sent or received by multiple blocks through the callback calls.
In addition to decreasing of application memory footprint this mechanism avoids the internal mes-
sage parsing, which leads to better performance.

Message exchange functions of the Merge DICOM Toolkit are listed in the table below.

Table 4.8: Merge DICOM Toolkit message exchange functions

Using select() to handle asynchronous events

In specialized cases where the application reading the request or response message is waiting on
several asynchronous events, not just the message event, the MC_Get_Association_Info() call can
be used to get the file descriptor for the socket over which message exchange will occur. The
select() system call can then be used to wait asynchronously for a DICOM request or response
message. When select returns on the DICOM message file descriptor, MC_Read_Message() can be
called and will return immediately with the received message.

Your application may want to take advantage of Merge DICOM Toolkit's message validation func-
tionality before sending a DICOM message out on the network, or before parsing and acting on a
message received from some other device. Also, when constructing a request or response mes-

Function

MC_Send_Request_Message()

MC_Send_Request()

MC_Send_Response_Message()

MC_Send_Response()

MC_Read_Message()

MC_Read_Message_To_Tag()

MC_Continue_Read_Message_To_Tag()

MC_Continue_Read_Message_To_Stream()

MC_Read_To_Stream()

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

84© Copyright Merge Healthcare Solutions Inc. 2023

sage, it is important to note that for some services, your application will need to set the value of
command attributes in the message. Refer to 4.7.6. VALIDATING MESSAGES ON PAGE 73 for more
information.

4.8.2. Asynchronous Communications

The DICOM standard defines an optional method for negotiation of an Asynchronous Operations
Window. The Asynchronous Operations Window allows the client and server during association
negotiation to define how many request messages can be sent over an association before a
response message is required to be received. When the Asynchronous Operations Window is not
negotiated (the default behavior of Merge DICOM Toolkit) only one request message can be sent
before a response is received. Use of asynchronous operations can improve network performance
when transferring a large number of messages over an association.

The specific fields negotiated over an association are the maximum number of operations, sub-
operations, or notifications invoked by the requester of the association and the maximum number
of operations, sub-operations, or notifications performed by the requester of the association. The
client proposes settings for both of these fields, and the server responds with values less than or
equal to the proposed values that are then used for the association.

The term notifications refers to N-EVENT-REPORT messages that are sent from an SCP to an SCU.
These messages are used by DICOM services such as Print Job and Storage Commitment. The
terms operations and sub-operations refer to all other message types. The term sub-operations
specifically refers to services such as Query/Retrieve where multiple response messages are sent
for a single request message.

Asynchronous definitions

For a client negotiating the SCU role, the invoked field refers to the number of operations that could
be sent without receiving a response message and the performed field would specify the maximum
number of notifications received before the client is required to send a response message. For a cli-
ent negotiating the SCP role and an asynchronous window, the invoked field would refer to the max-
imum notifications sent before receiving a response and the performed field would refer to the
maximum operations received before the client is required to send a response.

Performance Tuning

Although asynchronous operations can be used for all DICOM service classes, this feature is most
useful with the Storage Service Class. Asynchronous operations can be utilized to improve the net-
work performance of transferring a large number of C STORE messages over an association.
During normal synchronous operations, there typically is no network activity while a Storage SCU
waits for a response message from an SCP. Because there is a time when no data is being sent from
the SCU to the SCP, a network is typically underutilized by synchronous DICOM transfers. Also,
sending a large number of small images typically is slower than sending a smaller number of large
images because a higher percentage of the association time is spent waiting on response mes-
sages. The figure below illustrates how an SCU waits on a response from the SCP while the SCP
processes a message.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

85© Copyright Merge Healthcare Solutions Inc. 2023

When asynchronous operations are negotiated, the SCU can poll for a response message, but if a
message is unavailable, it can start sending the next request message right away (if the max opera-
tions will not be exceeded). This allows an SCU to utilize the network bandwidth more fully. There is
only a small time when the SCU polls for a response message during which data is not being sent
from the SCU to the SCP.

The majority of changes required to implement asynchronous communications are on the SCU
side. A traditional SCP can effectively support asynchronous communications by simply enabling
its negotiation over associations. It is possible, however, to do further optimization of SCP applica-
tions. On operating systems that Merge DICOM Toolkit supports threading, an SCP can be written to
process messages in the background as it is reading request messages and to send response mes-
sages over the association when processing is completed. In this scenario, after reading a message,
the SCP would pass the received message to another thread for processing and freeing. The main
SCP thread would then go to reading the next message. Once processing is complete for a mes-
sage, the background thread would signal the main thread to send a response message for the
request. This allows the network bandwidth to be more fully utilized by having the SCP reading data
off the network as much as possible. The SCP in this case must monitor the negotiated max opera-
tions so that it is not exceeded.

The figure below shows an example message exchange between an SCU and SCP when using
asynchronous communications. This example shows how the SCU spends less time reading the
response messages and moves to sending the next request message to increase bandwidth utiliza-
tion.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

86© Copyright Merge Healthcare Solutions Inc. 2023

Message ID must be set for asynchronous

Asynchronous operations are implemented utilizing the standard Merge DICOM Toolkit network
functions, listed in TABLE 4.8: MERGE DICOM TOOLKIT MESSAGE EXCHANGE FUNCTIONS ON PAGE 83.
One additional requirement, however, is for the application to keep track of the Message ID
(0000,0110) tag and the Message ID Being Responded To (0000,0120) tags. Message ID contains an
integer uniquely identifying a request message transferred over an association. Merge DICOM Tool-
kit will automatically insert this tag when sending a request message over the network. Message ID
Being Responded To is contained in response messages, and contains the Message ID that corre-
sponds to the request message that a response is for.

During normal synchronous transfers, Merge DICOM Toolkit keeps track of the Message ID of the
last request message, and automatically inserts this into the Message ID Being Responded To tag
when sending a response. For asynchronous operations to work properly, the application is required
to keep track of these tags and appropriately fill them in response messages. For applications send-
ing request messages, after a call to MC_Send_Request_Message(), the application should
retrieve the Message ID tag from the message, and save it until a response message has been
received. For applications sending response messages, the Message ID should be retrieved out of
the request message, and set in the Message ID Being Responded To tag for the response message
when a response is sent.

Service lists are utilized to configure the invoked and performed operations for an SCU and SCP.
The configuration of service lists is discussed in the previous section of this document describing
the Application Profile configuration file. The MC_Get_Association_Info() function can be uti-
lized by an SCU or SCP application to determine the asynchronous operations invoked and per-
formed that were negotiated for an association. Merge DICOM Toolkit also keeps track of the
asynchronous operations negotiated and will prevent the user from exceeding the operations, sub-
operations, and notifications performed or invoked that were negotiated.

When writing asynchronous applications, care should be taken in keeping track of the resultant sta-
tus of all request messages that were sent. In particular, if an association is aborted, all outstanding
operations or notifications should be treated as failed and resent at a later time.

Deadlocks possible with asynchronous

It is possible to create deadlock situations when writing an asynchronous application. A situation
may arise where both the client and server are attempting to send data to each other that would
cause a deadlock. In general, applications should poll for incoming messages before sending a new
message. In particular, a Storage SCU should poll for a response message before sending a new

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

87© Copyright Merge Healthcare Solutions Inc. 2023

request message. Because of the size of the messages exchanged, it is most likely that a Storage
SCU would deadlock if it were not checking for response messages.

Performance Tuning

Finally, the configuration options TCPIP_SEND_BUFFER_SIZE and TCPIP_RECEIVE_BUFFER_-
SIZE are important for maximizing network performance. The send buffer specifies the amount of
data that can be queued in the TCP/IP stack of the OS without actually being sent. The receive buf-
fer specifies the amount of data that can be received by the TCP/IP stack of the OS before a Merge
DICOM Toolkit application must start reading the data. These options allow data to be queued by
the OS in the background while a Merge DICOM Toolkit application is doing other activities. For
instance, an entire response message can usually be stored in the send buffer and a call to
MC_Send_Response_Message() may return before any data has even been sent over the network.
Similarly, an application call to MC_Send_Request_Message() will return before all data has been
sent. This allows the application to start preparing the next message to be sent while data is still
being transferred. The maximum settings for these options is operating system dependent. It is sug-
gested that these options be configured to the maximum setting for an operating system. If the set-
tings are too high, an error will be logged to the merge.log file.

Use Full Duplex Networks with asynchronous communications

It is important that devices using asynchronous communications be configured to use full duplex
network connections. Using asynchronous communications in half duplex mode would greatly
degrade performance. Performance would more than likely be lower than if only synchronous com-
munications were used.

4.9. Using Compression/Decompression Callback
Functions

The purpose of registering a compression/decompression callback is to support compressed
transfer syntaxes more easily in DICOM. Compressed transfer syntaxes are used to take advantage
of the decreased image size that goes along with compressed pixel data. This is important when
dealing with large images that need to be stored or transmitted across a network.

The callbacks, when registered, are utilized any time the functions in the table below are called, and
the transfer syntax of a message has been set to JPEG_BASELINE, JPEG_EXTENDED_2_4,
JPEG_LOSSLESS_HIER_14, JPEG_2000, JPEG_2000_LOSSLESS_ONLY or RLE.

Table 4.9: Callbacks Utilized by Functions that set and get Pixel Data

Function Callback Utilized

MC_Set_Encapsulated_Value_From_Function() Compressor

MC_Set_Next_Encapsulated_Value_From_Function() Compressor

MC_Get_Encapsulated_Value_To_Function() Decompressor

MC_Get_Next_Encapsulated_Value_To_Function() Decompressor

MC_Get_Frame_To_Function() Decompressor

MC_Get_Offset_Table_To_Function() Decompressor

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

88© Copyright Merge Healthcare Solutions Inc. 2023

If there are no callbacks registered, the above functions will work the same as MC_Get_Val-
ue_To_Function() and MC_Set_Value_From_Function(), except encapsulation delimiters
will be removed and inserted, respectively.

MC_Register_Compression_Callbacks() is used to register the callback functions that take in
pixel data, and return a compressed image, or take in compressed data, and return the uncom-
pressed pixel data. You may provide your own function(s) to do this, or you may use one of the built
in compressors and decompressors supplied by Merge DICOM Toolkit.

How to register a Compression Callback Function

MC_Register_Compression_Callbacks() can be used to register a Callback Function with the
toolkit as follows:

status = MC_Register_Compression_Callbacks(msgID, MyCompressionCall-
back, MyDecompressionCallback);

This call registers MyCompressionCallback() and MyDecompressionCallback() with the
DICOM Toolkit library to handle data to be compressed/decompressed for a message object when
the above functions are called. Only one compressor and one decompressor may be registered for
a message at a time.

User Defined Compressor and/or Decompressor

If you use your own callback functions, both callbacks are prototyped the same. They must be pro-
totyped as follows:

MC_STATUS My(De)compressionCallback(

int CBMessageID,

void **CBContext,

unsigned long CBdataLength,

void *CBdataValue,

unsigned long* CBoutdataLength,

void **CBoutdataValue,

int CBisFirst,

int CBisLast,

int CBrelease);

CBMessageID allows a single Callback Function to handle requests for different messages. CBCon-
text is a pointer to a user defined structure that contains data that must be maintained between
(de)compression calls because the pixel data may be presented and received over multiple call-
backs.

CBdataLength, CBdataValue, CBisFirst and CBisLast are used to manage the data flow into
the callback function. When the callback is called with data, a 'chunk' is being supplied. Merge
DICOM Toolkit has set CBdataLength to the number of bytes of data it is providing at CBdat-
aValue. The length of the chunk must be less than INT_MAX.

The Merge DICOM Toolkit will set CBisFirst to TRUE (non-zero) the first time it is providing data
(that is, when it is providing the first block of data). Merge DICOM Toolkit sets CBisLast to TRUE
the last time it will be providing data (i.e. when it is providing the last block of data).

The callback function must provide all of the compressed/decompressed data when CBisLast is
received. CBoutdataLength should be set to the number of bytes of data the callback is providing
at CBoutdataValue.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

89© Copyright Merge Healthcare Solutions Inc. 2023

A call with CBrelease set to TRUE, should release all memory that the compressor/decompressor
has allocated.

NOTE: The callback should return MC_NORMAL_COMPLETION to indicate success, or MC_CANNOT_-
COMPLY for any failure.
When decompressing an image without an offset table, the toolkit does not know if it has
reached the end of a fragment or the end of a frame. The decompressor MUST return data
whenever it is available so the toolkit can keep track of the image data returned. When the
toolkit determines it has received an entire image and the image has been decompressed,
the isLast flag will be set, and no data will be passed to the callback.

Built in Compressor and Decompressor

Merge DICOM Toolkit has two sets of built in compressors and decompressors. The MC_RLE_Com-
pressor and MC_RLE_Decompressor can be used to compress or decompress data encoded in
the RLE transfer syntax. These routines support data with photometric interpretation of MONO-
CHROME1, MONOCHROME2, RGB, and YBR_FULL. The routines are supported on all Merge DICOM
Toolkit platforms. These callbacks should be registered as follows:

status = MC_Register_Compression_Callbacks(msgID, MC_RLE_Compressor,
MC_RLE_Decompressor);

The other Merge DICOM Toolkit built in compressor is MC_Standard_Compressor and the built in
decompressor is MC_Standard_Decompressor. These routines utilize libraries from Accusoft
(formerly Pegasus Imaging Corporation) (www.accusoft.com). They support the JPEG_BASELINE,
JPEG_EXTENDED_2_4, JPEG_LOSSLESS_HIER_14, JPEG_2000, JPEG_2000_LOSSLESS_ONLY
transfer syntaxes with photometric interpretations MONOCHROME1, MONOCHROME2, RGB, and YBR.
There are limits on the performance of the Pegasus libraries. These compressors are only available
on platforms that Pegasus supports. These are 32/64-bit Windows on x86, 32-bit Solaris on SPARC,
32/64-bit Linux on x86 and 32-bit Android on ARM7.

If using the built in Pegasus based compressor or decompressor, the callbacks should be regis-
tered as follows:

status = MC_Register_Compression_Callbacks(msgID, MC_Standard_Com-
pressor, MC_Standard_Decompressor);

For JPEG_BASELINE, JPEG_EXTENDED_2_4, and JPEG_LOSSLESS_HIER_14, images can be com-
pressed or decompressed at a maximum rate of 3 images (or frames) per second. For JPEG_2000
and JPEG_2000_LOSSLESS_ONLY, a dialog will be displayed on Windows each time the compres-
sor or decompressor is used. For other platforms a message will be displayed to stdout and a sev-
eral second delay will occur. Full licenses can be purchased from Accusoft and configured in Merge
DICOM Toolkit to remove these compression and decompression limits. The licenses can be con-
figured in the mergecom.pro configuration file.

The JPEG_BASELINE transfer syntax is UID 1.2.840.10008.1.2.4.50, JPEG Baseline (Process 1):
Default Transfer Syntax for Lossy JPEG 8 Bit Image Compression, and uses Pegasus libraries 6420/
6520. The table below details the photometric interpretation and bit depths supported by the stan-
dard compressor and decompressor for this transfer syntax. When lossy compressing RGB data,
the standard compressor by default compresses the data into YBR_FULL_422 format. The com-
pressor can also compress in YBR_FULL format if the COMPRESSION_RGB_TRANSFORM_FORMAT
configuration option is set to YBR_FULL. The Photometric Interpretation tag must be changed by
the application after compressing RGB data. Similarly, the Photometric Interpretation tag should be
changed back to RGB before decompressing YBR_FULL or YBR_FULL_422 data.

www.accusoft.com
www.accusoft.com

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

90© Copyright Merge Healthcare Solutions Inc. 2023

JPEG Baseline Supported Photometric Interpretations and Bit Depths

Table 4.10: JPEG Baseline Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_BASELINE decompression is sup-
ported on the Android platform. The Pegasus library for JPEG_BASELINE compression
(6420) is not available on the Android platform.

The JPEG_EXTENDED_2_4 transfer syntax is UID 1.2.840.10008.1.2.4.51, JPEG Extended (Process 2
& 4): Default Transfer Syntax for Lossy JPEG 12 Bit Image Compression (Process 4 only), and uses
Pegasus libraries 6420/6520. The table below details the photometric interpretation and bit depths
supported by the standard compressor and decompressor for this transfer syntax. When lossy
compressing RGB data, the standard compressor by default compresses the data into YBR_-
FULL_422 format. The compressor can also compress in YBR_FULL format if the COMPRES-
SION_RGB_TRANSFORM_FORMAT configuration option is set to YBR_FULL. The Photometric
Interpretation tag must be changed by the application after compressing RGB data. Similarly, the
Photometric Interpretation tag should be changed back to RGB before decompressing YBR_FULL
or YBR_FULL_422 data.

Table 4.11: JPEG Baseline Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_EXTENDED_2_4 decompression is
supported on the Android platform. The Pegasus library for JPEG_EXTENDED_2_4 com-
pression (6420) is not available on the Android platform.

The JPEG_LOSSLESS_HIER_14 transfer syntax is UID 1.2.840.10008.1.2.4.70, JPEG Lossless, Non-
Hierarchical, First-Order Prediction (Process 14 [Selection Value 1]): Default Transfer Syntax for
Lossless JPEG Image Compression, and uses Pegasus libraries 6220/6320. The table below details
the photometric interpretation and bit depths supported by the standard compressor and decom-
pressor for this transfer syntax. The standard compressor does not do a color transformation to
RGB data when compressing with JPEG_LOSSLESS_HIER_14. The Photometric Interpretation tag
should be left as RGB in this case.

JPEG Baseline

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 8 8

Bits Allocated 8 8 8

Samples Per Pixel 1 3 3

JPEG Extended (Process 2 & 4)

Photometric Interpretation MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422

Bits Stored 8 10 12 8 8

Bits Allocated 8 16 16 8 8

Samples Per Pixel 1 1 1 3 3

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

91© Copyright Merge Healthcare Solutions Inc. 2023

Table 4.12: JPEG Lossless Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_LOSSLESS_HIER_14 decompression
is supported on the Android platform. The Pegasus library for JPEG_LOSSLESS_HIER_14
compression (6220) is not available on the Android platform.

The JPEG_2000 transfer syntax is UID 1.2.840.10008.1.2.4.91, JPEG 2000 Image Compression, and
uses Pegasus libraries 6820/6920 for lossy or lossless. The table below details the photometric
interpretation and bit depths supported by the standard compressor and decompressor for this
transfer syntax.

Table 4.13: JPEG 2000 Lossy Supported Photometric Interpretations and Bit Depths

NOTE: As of the present release of the toolkit, only the JPEG_2000 decompression is supported
on the Android platform. The Pegasus library for JPEG_2000 compression (6820) is not
available on the Android platform.

The JPEG_2000_LOSSLESS_ONLY transfer syntax is UID 1.2.840.10008.1.2.4.90, JPEG 2000 Image
Compression (Lossless Only), and uses Pegasus libraries 6820/6920 for lossless. The table below
details the photometric interpretation and bit depths supported by the standard compressor and
decompressor for this transfer syntax.

Table 4.14: JPEG 2000 Lossless Supported Photometric Interpretations and Bit Depths

JPEG Lossless Non-Hierarchical Process 14

Photometric Interpreta-
tion

MONOCHROME1
MONOCHROME2

RGB
YBR_FULL

PALETTE COLOR

Bits Stored 2 to 16 8 1 - 16

Bits Allocated 8 or 16 8 8 or 16

Samples Per Pixel 1 3 1

JPEG 2000 (When used for Lossy)

Photometric Interpreta-
tion

MONOCHROME1
MONOCHROME2

YBR_ICT RGB YBR_FULL

Bits Stored 8 10 12 16 8 8 8

Bits Allocated 8 16 16 16 8 8 8

Samples Per Pixel 1 1 1 1 3 3 3

JPEG 2000 (When used for Lossy)

Photometric Interpre-
tation

MONOCHROME1
MONOCHROME2

YBR_RCT
YBR_FULL

RGB PALETTE
COLOR

Bits Stored 8 10 12 16 8 8 1 - 16

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

92© Copyright Merge Healthcare Solutions Inc. 2023

NOTE: As of the present release of the toolkit, only the JPEG_2000_LOSSLESS_ONLY decompres-
sion is supported on the Android platform. The Pegasus library for JPEG_2000_LOSS-
LESS_ONLY compression (6820) is not available on the Android platform.

SPECIAL NOTES

When using the standard compressor, all data needs to be right justified, for example, bit 0 contains
data, but the highest bits may not. RGB and YBR must be non-planar (R1G1B1, R2G2B2, ... or
Y1Y2B1R1, Y3Y4B3R3,...)

JPEG_2000/JPEG_2000_LOSSLESS_ONLY will cause a irreversible, or reversible color transforma-
tion when compressing RGB data. The Photometric Interpretation MUST be changed from RGB to:

● YBR_ICT if JPEG_2000 is used with COMPRESSION_WHEN_J2K_USE_LOSSY = Yes (Lossy
color transform for lossy compression)

● YBR_RCT if JPEG_2000_LOSSLESS_ONLY or JPEG_2000 are used with COMPRES-
SION_WHEN_J2K_USE_LOSSY = No (Lossless color transform for lossless compression).

Similarly, on the decompression end, the Photometric Interpretation should be changed back to
RGB, but the Lossy Image Compression attribute should indicate it has been lossy compressed.

After using the standard compressor or decompressor the application should call MC_Thread_Re-
lease() to free resources allocated by Pegasus, before the thread that used the compressor or
decompressor ends. This is needed to avoid memory leaks on Linux and UNIX platforms.

Merge DICOM Toolkit can update group 0x0028 for you

The UPDATE_GROUP_0028_ON_DUPLICATE configuration option can also be enabled so Merge
DICOM Toolkit will update the Group 0x0028 tags for you. When this configuration option is enabled,
the Photometric Interpretation will be updated for you as mentioned above. When decompressing
an image, the photometric interpretation will also be updated. In addition, when lossy compression
is done, the Lossy Image Compression, Lossy Image Compression Ratio, and Lossy Image Com-
pression Method tags will be updated by Merge DICOM Toolkit.

4.10. Using Callback Functions
The Callback Functions (with a capital 'C' - capital 'F') discussed in this section, exhibit one signifi-
cant difference from the callback functions used in the MC_Get_Value_To_Function() and
MC_Set_Value_From_Function() functions and the stream handling functions described ear-
lier. Callback Functions 'throttle' the data flow as the message object is communicated over the net-
work. Rather than storing attributes with large OB/OW/OV/OL/OF/OD values within the message
object itself, your application is responsible for maintaining the value of these attributes. This can be
useful on systems with limited resources or when dealing with very large pixel data elements, such
as large multi-frame images.

MC_Register_Callback_Function() is used when performing DICOM interchangeable media
operations; when the MC_Open_File_Bypass_OBOW() function is called to read in a DICOM file.
See further discussion of this function in 4.12. DICOM FILES ON PAGE 99.

Bits Allocated 8 16 16 16 8 8 8 or 16

Samples Per Pixel 1 1 1 1 3 3 1

JPEG 2000 (When used for Lossy)

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

93© Copyright Merge Healthcare Solutions Inc. 2023

Server Callbacks

A server (SCP) application can call MC_Register_Callback_Function() to register a Callback
Function that will be called repetitively as the attribute's value arrives on an association during an
MC_Read_Message() call. By the time the MC_Read_Message() returns to the application, the
attribute value will already have been handled by your registered Callback Function. The Callback
Function could be used by the server to treat this large block of OB/OW/OV/OL/OF/OD data (usu-
ally pixel data) specially (for example, store in a frame buffer, filter through decompression hard-
ware, write to disk...) without any overhead introduced by the message object.

Client Callbacks

A client (SCU) application can call MC_Register_Callback_Function() to register a Callback
Function that will be called repetitively as the attribute's value is transmitted over an association
during an MC_Send_Request_Message() or MC_Send_Response_Message() call. During
either of these calls, the attribute value will be handled by your registered Callback Function before
these calls can return to your application. The Callback Function can also be used by the client to
specially manage OB/OW/OV/OL/OF/OD data (for example, read from a frame buffer, filter
through compression hardware or software, read from disk, etc.), without any overhead introduced
by the message object.

Other uses of Callbacks

Callback Functions can also be used in other situations through the use of MC_Set_Message_-
Callbacks(). Normally Callback Functions are associated with a message or file when a Merge
DICOM Toolkit function contains an application ID as a parameter (or when an association ID is
associated with an application ID that is used as a parameter). The MC_Set_Message_Call-
backs() function allows the user to directly associate Callback Functions for an application with a
message or file object. After calling MC_Set_Message_Callbacks(), subsequent calls to func-
tions such as MC_Open_File(), MC_Message_To_Stream() or MC_Stream_To_Message() can
use Callback Functions for managing pixel data.

Use of empty messages require adding the pixel data tag

Note that when creating a message with MC_Open_Empty_Message() or MC_Create_Empty_-
File() it is necessary to add the pixel data tag into the message for Callback Functions to work
properly. This can be done through the use of MC_Add_Standard_Attribute(). Without a place-
holder tag in the message or file to signal Merge DICOM Toolkit that pixel should be included in the
message or file, Merge DICOM Toolkit will not know that Callback Functions should be used with the
message or file. When creating messages with MC_Open_Message() or MC_Create_File(), this
is not necessary.

How to register a Callback Function

The MC_Register_Callback_Function() can be used to register a Callback Function with the
toolkit as follows:

Status = MC_Register_Callback_Function(myApplicationID, (MC_ATT_PIX-
EL_DATA, myUserInfo, MyCallbackFunction);

This call registers MyCallbackFunction() with the DICOM Toolkit library to handle the pixel data
(7FE0,0010) attribute for myApplicationID. myUserInfo can be set to NULL or point to a user
defined structure that can be used to communicate application specific data to the Callback Func-
tion. A single Callback Function can be multiply registered to handle many tags. Also, a single Call-
back Function will handle both transmission and reception of the data associated with the tag(s).

Callback Function

MyCallbackFunction() is prototyped as follows:

MC_STATUS MyCallBackFunction(int CBMessageID, unsigned long CBtag,

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

94© Copyright Merge Healthcare Solutions Inc. 2023

 void *myUserInfo, CALLBACK_TYPE CBtype,

 unsigned long *CBdataSizePtr, void
**CBdataBufferPtr,

 int CBisFirstPtr, int *CBisLastPtr);

CBMessageID and CBtag allow a single Callback Function to handle requests for different mes-
sage and tag combinations. myUserInfo is a pointer to the user defined structure passed in from
the MC_Register_Callback_Function() described above.

Based on the value of CBtype, your Callback Function determines how it is to behave; whether it is
to supply/receive the length of the entire attribute value or supply/receive a 'chunk' of value data.
CBdataSizePtr, CBdataBufferPtr, CBisFirstPtr and CBisLastPtr are used to manage the
data flow. The table below describes this behavior.

Table 4.15: Callback Function Behavior Based on Value of CBtype parameter

Value of CBtype Required Callback Behavior

REQUEST_FOR_DATA_LENGTH Callback is supplying OB/OW/OV/OL/OF/OD data and the length
of the entire attribute value is being requested. The length is
passed back using *CBdataSizePtr. CBdataBufferPtr is not used.

REQUEST_FOR_DATA Callback is supplying OB/OW/OV/OL/OF/OD data and a 'chunk'
of this data is being requested. Callback must set *CBdataSizePtr
to the number of bytes of data you are providing at
*CbdataBufferPtr. The length of the 'chunk' must be less than
INT_MAX.
Merge DICOM Toolkit will set CBisFirstPtr to TRUE (not zero) the
first time it is requesting data for this attribute's value (i.e., when
you are to provide the first block of data). Callback must set *CBis-
LastPtr to TRUE (not zero) the last time you are providing data for
this attribute's value (that is, when you are providing the last block
of data).

REQUEST_FOR_DATA_WITH_OFF-
SET

Callback is supplying OB/OW/OV/OL/OF/OD data and a 'chunk'
of this data from a specific offset in the seekable stream is being
requested. *CBdataSizePtr is the pointer to long which contains
the offset of required data. After reading the data, the Callback
must set *CBdataSizePtr to the number of bytes of data you are
providing at *CbdataBufferPtr. The length of the 'chunk' must be
less than INT_MAX.
Merge DICOM Toolkit will set CBisFirstPtr to TRUE (not zero) the
first time it is requesting data for this attribute's value (i.e., when
you are to provide the first block of data). Callback must set *CBis-
LastPtr to TRUE (not zero) the last time you are providing data for
this attribute's value (i.e., when you are providing the last block of
data).

PROVIDING_DATA_LENGTH Callback is receiving OB/OW/OV/OL/OF/OD data and the length
of the entire value for this attribute is being supplied. The length is
passed in using *CBdataSizePtr. CBdataBufferPtr is not used.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

95© Copyright Merge Healthcare Solutions Inc. 2023

Because a single Callback Function's behavior and usage of parameters must vary based on the
value of CBtype this may all seem a bit confusing. You may want to break for a beverage and read
this section once more. Also, be sure to read the detailed specification of MC_Register_Call-
back_Function() in the Merge DICOM Toolkit Reference Manual.

4.11. Sequences of Items
The DICOM Value Representation SQ is used to indicate an attribute in a DICOM message contain-
ing a value that is a sequence of items. A sequence of items is a set of object instances, where each
object instance can also contain attributes that have a VR of SQ. This powerful capability allows the
nesting of objects, or the definition of 'container' objects (such as folders, film boxes, directories,
etc.). One can think of these nested objects as message objects minus the command portion.

The figure below shows a DICOM message containing a sequence of items running two levels deep.
Note that these nested sequences are contained within the same Message Stream. Sequences of
items can also be contained in a DICOM file, and we will see that they are contained in DICOMDIR
files. An attribute whose value is a sequence of items is simply an attribute that has a potentially
large and complex value. Fortunately, Merge DICOM Toolkit allows your application to deal with

PROVIDING_MEDIA_DATA_LENGTH Callback is receiving the offset of the value of a DICOM file attri-
bute of Value Representation OB, OW, OV, OL, OF, or OD from the
beginning of the file. CBdataBufferPtr points to an unsigned long
that contains this offset. *CBdataSizePtr is set to the length of the
value contained at the offset.
This value for CBtype only occurs as a result of the MC_Open_-
File_Bypass_OBOW() function call. For more information, see 4.12.
DICOM FILES ON PAGE 99 and the Merge DICOM Toolkit Reference
Manual.

PROVIDING_OFFSET_TABLE Callback is receiving offset table of encapsulated OB/OW/OV/OL/
OF/OD data. Merge DICOM Toolkit has set *CBdataSizePtr to the
number of bytes of data it is providing at *CBdataBufferPtr.
Merge DICOM Toolkit will set CBisFirstPtr and *CBisLastPtr to
TRUE (not zero). The entire offset table is passed in one call to the
registered callback function. Note that the callback can be repeat-
edly called

PROVIDING_DATA Callback is receiving OB/OW/OV/OL/OF/OD data and a 'chunk' of
this data is being supplied. Merge DICOM Toolkit has set *CBdata-
SizePtr to the number of bytes of data it is providing at
*CBdataBufferPtr. The length of the chunk must be less than INT_-
MAX.
Merge DICOM Toolkit will set CBisFirstPtr to TRUE (not zero) the
first time it is providing data for this attribute's value (that is, when
it is providing the first block of data). Merge DICOM Toolkit sets
*CBisLastPtr to TRUE (not zero) the last time it will be providing
data for this attribute's value (that is, when it is providing the last
block of data).

FREE_DATA The memory associated with the enclosing message, file, or item is
being freed, and the callback can free its memory associated with
the OB/OW/OV/OL/OF/OD data. Note that callbacks are only
called with this callback type if the USE_FREE_DATA_CALLBACK
configuration option is enabled in the system profile.

Value of CBtype Required Callback Behavior

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

96© Copyright Merge Healthcare Solutions Inc. 2023

sequences of items an item at a time and hierarchically, as pictured in the figure below, and takes
care of the encoding of the sequence within the DICOM message stream.

Encoding and decoding attributes in an item

Each item object in a sequence is a special class, or subclass in object-oriented terminology, of a
message object. All the message building and parsing functionality described in previous sections
of this manual also applies to item objects. The MC_Get_Value_...() and MC_Set_Val-
ue_...() families of functions work on item objects as well as message objects; simply specify an
ItemID in the first parameter to these functions, rather than a MessageID.

Four additional Merge DICOM Toolkit API functions are required for Items, and are specific to items.
MC_Open_Item() is used to create an Item with a given ItemName and returns an ItemID handle.
MC_Free_Item() is used to release the items resources back to the operating system. MC_Empty-
_Item() is used to empty the values of all the attributes of an item and MC_List_Item() lists the
contents of an item object to an output stream.

ItemNames are strings used to identify each item and are listed in the message.txt file for attri-
butes having a VR of SQ. The contents of each item are also listed in the message.txt file. Below
are two excerpts of message.txt, one showing a reference to the Issuer of Accession Number Item,
and the other the contents of that item.

##

CHEST_CAD_SR - C_STORE_RQ

##

0008,0005 Specific Character Set CS 1C

Condition: EXTENDED_OR_REPLACEMENT_CHARACTER_SET_USED

Defined Terms: ISO_IR 100, ISO_IR 101, ISO_IR 109, ISO_IR 110,

ISO_IR 144, ISO_IR 127, ISO_IR 126, ISO_IR 138, ISO_IR 148,

ISO_IR 166, ISO_IR 13, ISO 2022 IR 6, ISO 2022 IR 100,

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

97© Copyright Merge Healthcare Solutions Inc. 2023

ISO 2022 IR 101, ISO 2022 IR 109, ISO 2022 IR 110, ISO 2022 IR 144,

ISO 2022 IR 127, ISO 2022 IR 126, ISO 2022 IR 138, ISO 2022 IR 148,
ISO 2022 IR 149, ISO 2022 IR 166, ISO 2022 IR 13, ISO 2022 IR 87,

ISO 2022 IR 159, ISO_IR 192, GB18030

0008,0012 Instance Creation Date DA 3

0008,0013 Instance Creation Time TM 3

0008,0014 Instance Creator UID UI 3

0008,0015 Instance Coercion DateTime DT 3

0008,0016 SOP Class UID UI 1

0008,0018 SOP Instance UID UI 1

0008,001A Related General SOP Class UID UI 3

0008,001B Original Specialized SOP Class UID UI 3

0008,0020 Study Date DA 2

0008,0021 Series Date DA 3

0008,0023 Content Date DA 1

0008,0030 Study Time TM 2

0008,0031 Series Time TM 3

0008,0033 Content Time TM 1

0008,0050 Accession Number SH 2

0008,0051 Issuer of Accession Number Sequence SQ 3

Item Name(s): ISSUER_OF_ACCESSION_NUMBER

...

...

===

Item Name: ISSUER_OF_ACCESSION_NUMBER

===

0040,0031 Local Namespace Entity ID UT 1C

Condition: A00400032_NOT_PRESENT

0040,0032 Universal Entity ID UT 1C

Condition: A00400031_NOT_PRESENT

0040,0033 Universal Entity ID Type CS 1C

Condition: A00400032_PRESENT

Defined Terms: DNS,EUI64,ISO,URI,UUID,X400,X500

Encoding items in a sequence

To encode an item into an attribute of Value Representation SQ, treat the attribute as a multi-valued
integer, where each value is an ItemID. This means using the MC_Set_Value_From_Int() and

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

98© Copyright Merge Healthcare Solutions Inc. 2023

MC_Set_Next_Value_From_Int() functions where the Value parameter is the ItemID. Similarly,
to decode an item, use the MC_Get_Value_To_Int() and MC_Get_Next_Value_To_Int()
functions where the value returned is the ItemID.

The following sample code fragment gives an example of encoding a Pre-formatted Grayscale
Image Item into a sequence:

status = MC_Open_Item(&itemID, "PREFORMATTED_GRAYSCALE_IMAGE");

if(status != MC_NORMAL_COMPLETION)

{

 printf("Unable to open request message:\n");

 printf("\t%s\n", MC_Error_Message(status));

 return 1;

}

status = MC_Set_Value_From_String(itemID, MC_ATT_PIXEL_ASPECT_RATIO,
"1");

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_String failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Item(&itemID);

 return 1;

}

status = MC_Set_Next_Value_From_String(itemID, MC_ATT_PIX-
EL_ASPECT_RATIO, "1");

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_String failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Item(&itemID);

 return 1;

}

callbackInfo.messageID = itemID;

/* encode other item attributes here */

/* now encode the item into the sequence */

status = MC_Set_Value_From_Int(messageID, MC_ATT_PREFORMATTED_GRAY-
SCALE_IMAGE_SEQUENCE, itemID);

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

99© Copyright Merge Healthcare Solutions Inc. 2023

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Set_Value_From_Int failed:\n");

 printf("\t%s\n", MC_Error_Message(status));

 MC_Free_Message(&messageID);

MC_Free_Item(&itemID);

return 1;

 }

This excerpt is taken from the sample print application supplied with Merge DICOM Toolkit. See that
application's code for further examples of encoding and decoding of sequences of items.

4.12. DICOM Files
Maintaining a DICOM file set is a matter of maintaining various DICOM files and a single DICOM
directory file (DICOMDIR). First, the functions supplied by Merge DICOM Toolkit that operate on all
DICOM files are described; followed by a description of those functions that are especially suited
for the complexities of the DICOMDIR file.

The figure below summarizes the DICOM file access function calls described in this section.

4.12.1. File System Interface Functions

This may sound strange, but all the media interchange functionality of the DICOM Toolkit relies on
functions that you supply to interface with the particular physical medium and file system format on
your target device. This approach was chosen because of the wide variety of media and file system
configurations allowed by the DICOM Standard and the potentially unlimited combination of media
devices, device drivers, and file system combinations for which DICOM media interchange applica-
tions may be developed.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

100© Copyright Merge Healthcare Solutions Inc. 2023

You must interface with the selected media device

Your application need only supply two file system interface functions that the DICOM Toolkit Library
calls back; a YourFromMediaFunction() that reads from your media of choice, and a YourToMe-
diaFunction() that performs the write operations to the same. These functions will be described
in greater detail in the following sections, and they are often very simple to write (see the Sample
Media Application supplied with the toolkit).

You will find that the DICOM Toolkit provides powerful DICOM media functionality by supplying your
application with:

● a greatly simplified way to deal with the complex encoding and decoding required within a
DICOM file.

● very powerful DICOMDIR file navigation and maintenance functionality.

● an API that is very consistent with that used for the maintenance of DICOM messages used in
network functionality; many of the encoding and decoding functions already described apply
equally well to DICOM file objects.

To perform all this functionality on your medium of choice, you need only supply the two file system
interface functions just discussed.

4.12.2. Creating a File Object

Before the contents of an existing DICOM file can be read in or a new DICOM file can be created, a
file object must be created. The MC_Create_File() call creates the file object whose type is specified
by the supplied service-command pair. For example, the following call creates an DICOM MR image
file object.

/* Create new MR Image file object */

status = MC_Create_File(&fileID, fileName, "STANDARD_MR",
C_STORE_RQ);

if(status != MC_NORMAL_COMPLETION)

{

 PrintError("Unable to create file object",status);

 exit(EXIT_FAILURE);

}

The fileID variable is used to return a handle to the new file object, fileName is a string variable
containing the DICOM file ID (file name); for example, "PNR1/HDR3/AMR62", that will be given to
the new object. "STANDARD_MR" is the service name, and C_STORE_RQ is the command name
identifying the class of file object being created (see TABLE 2.5: SERVICE-COMMAND PAIRS SPECIFY-
ING OBJECT INSTANCES THAT CAN BE STORED IN A DICOM FILE ON PAGE 31).

It is important to realize that MC_Create_File() does not create the physical DICOM file out on
the media; the MC_Write_File() call described later does that. MC_Create_File() corre-
sponds to the MC_Open_Message() call used in networking; it creates references to the proper
message info file along with the data dictionary and builds an unpopulated file object instance for
your application to fill in. This file object contains empty attributes.

Performance Tuning

Just as there is an MC_Open_Empty_Message() available for networking, there is also an MC_Cre-
ate_Empty_File() available for media interchange. In this case, the message info and data dic-
tionary files are not referenced and an empty message object instance is opened. This message

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

101© Copyright Merge Healthcare Solutions Inc. 2023

object contains no attributes and the MC_Set_Service_Command() function must be called to set
the service and command for this file before it can be written to the file set. As in the case of net-
working, this approach is more efficient but penalizes you in the area of run-time error checking.

When your application is done using a file object, the file object should be freed using the MC_-
Free_File() call.

4.12.3. Reading Files

To read in the contents of a DICOM file for analysis or parsing, you must open the file. Opening a
DICOM file in the DICOM Toolkit API means that a complete file object is filled in from an existing
physical file. This means the entire DICOM file is read in on the open.

The following code reads a file into the file object:

/* Read in the DICOM file */

status = MC_Open_File(myApplicationID, fileID, NULL, MediaToFile);

if(status != MC_NORMAL_COMPLETION)

{

 PrintError("Unable to read file from media",status);

 exit(EXIT_FAILURE);

}

myApplicationID is the handle to your application entity obtained when you registered your appli-
cation with the Toolkit Library, fileID is the handle of a previously created file object, and NULL
specifies that you aren't passing any user information to MediaToFile. MediaToFile() is the file
system interface callback function you must author to read from your media device; described ear-
lier as the YourFromMediaFunction().

The parameters for this callback function must agree with the following prototype:

MC_STATUS MediaToFile(char *filename,

void *userInfo,

int *dataSize,

void**dataBuffer,

int isFirst,

int *isLast);

fileName identifies the file you should be reading (for example, "/PNR1/HDR3/AMR62"), data-
Size specifies the even number of bytes of data you are providing, and dataBuffer is address of
the data. isFirst indicates whether this is the first chunk of data read (for example, you should
open the file), isLast is set to a non-zero value by your application when it has finished return-
ing data (for example, has closed the file). You can decide for yourself how you wish to read in the
data from the physical file, all at once or a block at a time. The library will call back MediaToFile()
until you indicate that all data has been read. The userInfo parameter can be used to pass appli-
cation specific data between the sample application and the callback function.

See the Merge DICOM Toolkit Reference Manual for a more detailed description of MC_Open_-
File() and the YourFromMediaFunction() callback function.

Once the file object has been opened, the same MC_Get_Value...() family of parsing functions
used for message objects (described earlier) can be used to read attribute values from the file

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

102© Copyright Merge Healthcare Solutions Inc. 2023

object. Also, the same MC_Set_Value...() family of functions can be used to modify the values
of file attributes.

Performance Tuning

Variants on MC_Open_File() are also provided by the toolkit:

● MC_Open_File_Bypass_OBOW() will read in an attribute's value that is of type OB, OW, OV, OL,
OF or OD, but will not store it, if and only if you have registered a Callback Function with
MC_Register_Callback_Function() for that attribute. Instead, the offset of the attribute's
value from the beginning of the file along with the length of the value will be passed to the user's
registered Callback Function. The user's Callback Function can then deal with the Pixel Data as
it sees fit; for example, ignore it, read it in later, stream it in to improve the memory consumption
or process it directly from the file using your own special filters or hardware.

● MC_Open_File_Upto_Tag() will stop reading the attributes from media into the file object
when it reaches the first attribute greater than a specified tag. The offset in bytes from the
beginning of the file to the beginning of the first attribute greater than the specified tag is
returned. The user's application must then deal with reading in the rest of the DICOM file from
media. This function is most useful when the DICOM file contains pixel data (7FE0, 0010) as its
last attribute and this pixel data is very large. In these instances, you may wish to ignore the pixel
data, read it in later using callback mechanism, or process it directly from the file using your
own special filters or hardware.

● MC_Open_File_Upto_Tag_Bypass_Value() will read the attributes from the media into the
file object including a specified tag, but will not read the tag attributes value. This function is
most useful when the DICOM file contains large pixel data (7FE0, 0010) attribute. In this case
the most effective way to handle it is to use the callback mechanism through MC_Register_Call-
back_Function so the attribute values could be retrieved from media upon later request. The
user's application callback must then deal with reading data from seekable DICOM file stream
from the given offset provided in the REQUEST_FOR_DATA_WITH_OFFSET command.

See the Merge DICOM Toolkit Reference Manual for a detailed description of the use of these func-
tions.

4.12.4. Creating and Writing Files

Once a DICOM file object has been created using the MC_Create_File() function and filled in by
using either the MC_Open_File() or the MC_Set_Value...() functions (or a combination of
both), the file can be written out to media using a single MC_Write_File() function:

status = MC_Write_File(fileID, 2, NULL, FileToMedia);

if(status != MC_NORMAL_COMPLETION)

{

 printf("%s\tError on MC_Write_File:\n", prefix);

 printf("%s\t\t%s\n", prefix, MC_Error_Message(status));

 return status;

}

MC_Free_File(&fileID);/* Free the file object once written to media
*/

fileID is the handle to the file object being written. 2 is the value given to the NumBytes parameter
and means that the file will be padded, if necessary, to have a total length that is a multiple of 2 using
the file padding attribute (FFFC, FFFC). If this value is set to 0, no file padding will occur. NULL spec-

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

103© Copyright Merge Healthcare Solutions Inc. 2023

ifies that you aren't passing any user information to FileToMedia. FileToMedia() is the file sys-
tem interface callback function you must author to write from your media device; described earlier
as YourToMediaFunction().

The parameters for this callback function must agree with the following prototype:

static MC_STATUS FileToMedia(char *filename,

 void *userInfo,

 int dataSize,

 void *dataBuffer,

 int isFirst,

 int isLast);

fileName identifies the file you should be writing (e.g., "/PNR1/HDR3/AMR62"), dataSize speci-
fies the even number of bytes of data you should write, and dataBuffer is address of the data.
isFirst indicates whether this is the first chunk of data being written (e.g., you should open the
file), isLast is set to MTI_TRUE by the library when it is requesting that you write the last block of
data (e.g., you can now close the file). The library will callback FileToMedia() until all data has
been written. The userInfo parameter can be used to pass application specific data between the
sample application and the callback function.

See the Merge DICOM Toolkit Reference Manual for a more detailed description of MC_Write_-
File() and the YourToMediaFunction() callback function.

Performance Tuning

One special variant on MC_Write_File() is also provided by the toolkit:

● MC_Write_File_By_Callback() works similar to MC_Write_File() except that it allows
for attributes whose values are of type OB, OW, OV, OL, OF or OD to be supplied by a Callback
Function if and only if you have registered it with MC_Register_Callback_Function(). The
user's Callback Function can then deal with the Pixel Data as it sees fit.

4.12.5. Other Useful File Object Functions

Other useful functions that operate on file objects include:

● MC_Reset_Filename() allows your application to change the file name associated with an
existing file object. This could be useful if you have read in a DICOM file, modified its contents,
and then wish to write the file out with a new file name.

● MC_Empty_File() clears the value from all attributes in the file object. This function provides a
more efficient mechanism for writing out several file objects of the same type. Your application
can simply empty and refill the attribute values rather than inducing the processing overhead of
freeing and creating a whole new file object.

● MC_Set_File_Preamble() and MC_Get_File_Preamble() allow a specialized application
to examine and modify the 128 byte DICOM file preamble. The DICOM Toolkit Library defaults
the preamble to all zeroes (as directed by the standard) so in most cases your application will
not need to use these functions.

● MC_List_File() is the analogue of MC_List_Message() except that it lists the contents of a
file object (including the file preamble) rather than a message object. This is a very useful func-
tion for validation and diagnosis of your application. See the description of MC_List_Mes-
sage() earlier in this document.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

104© Copyright Merge Healthcare Solutions Inc. 2023

See the Merge DICOM Toolkit Reference Manual and sample media application for more informa-
tion on these calls.

4.12.6. File Validation

File validation occurs in much the same manner as message validation. Before the file can be vali-
dated it must be read into a file object created with an MC_Create_File() call. If the file object
was created using MC_Create_Empty_File(), then MC_Set_Service_Command() must be
called to identify the type of file object before validation can occur. See 4.7.6. VALIDATING MESSAGES
ON PAGE 73, as almost all of it applies equally well to file validation.

Performance Tuning

DICOM file validation does involve processing overhead. The most significant overhead is in the
accessing of the message info files, and significantly less overhead is involved in actually validating
the contents of the file object structure. It is important to understand that depending on the way in
which your message object was created, this validation overhead can occur at different points in
your application; see the table below.

Table 4.16: Point of performance overhead associated with file validation

Using MC_Create_File() has an up-front performance cost but provides additional validation as
you set the value of attributes in the file object. With the MC_Create_Empty_File() method, the
cost occurs on validation itself.

Many times, MC_Validate_File() is selectively used in an application: as a runtime option or
conditionally compiled into the source code. Validation might only be used during integration test-
ing or in the field for diagnostic purposes. Reasons for this include performance since the overhead
associated with file validation may be an issue, especially for larger files having many attributes or on
lower-end platforms. Also, validation can clutter the message log with warnings and errors that may
not be desirable in a production environment.

4.12.7. Converting Files to/from Messages

Two very useful and powerful functions are supplied for converting file objects to message objects
and vice versa. These functions are MC_File_To_Message() and MC_Message_To_File().
Remember that most DICOM files (other than the DICOMDIR file) are simply the information object
portion of a DICOM message encapsulated within a DICOM file (surrounded by a file preamble,
meta information, and optional padding).

MC_File_To_Message() has a single FileID parameter and returns a status. This call converts
FileID to a message handle by removing the file preamble, meta information, and optional pad-
ding from the file object and adding the command attributes. While Merge DICOM Toolkit sets the
values of many of these command type attributes automatically, some services require the applica-
tion to set them. Once converted to a message object, the object can be sent and received over the
network using the calls detailed earlier.

File Object Creation Method Point at which file access overhead for validation occurs

MC_Create_File() MC_Create_File()

MC_Create_Empty_File() MC_Validate_File()

NOTE: You must use MC_Set_Service_Command() before validating
and/or writing a file created in this manner.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

105© Copyright Merge Healthcare Solutions Inc. 2023

Conversely, MC_Message_To_File() has two parameters, MessageID and FileName, and also
returns a status. This call converts MessageID to a file handle by removing the command attributes
from the message object and adding the file preamble, and meta information attributes. The file
meta information attributes must be set by the user. Optional padding can be added if required
using the MC_Write_File() call. If the message was originally opened as an empty message and
the command and service were not set, then MC_Set_Service_Command() must be called before
the file object can be validated.

These two functions are most often useful when reading and writing image files to and from DICOM
media that were received (or will need to be transmitted) over the network as C-STORE request
messages.

4.12.8. Saving Raw (Unparsed) Messages as DICOM Files

Performance Tuning

A common usage of the Merge DICOM Toolkit is to save incoming (received from network) mes-
sages. When reading a DICOM message from the network, attributes in a message are parsed, vali-
dated before storing them in memory, and then later written out from memory objects to a DICOM
file. With a message that has many levels of nested items, the parsing/creating of DICOM attributes
in memory has a significant impact in performance. The Storage SCP application is commonly used
to write out the received message content to a DICOM file without the need to modify the attributes
of the message. When such a case is needed, it is best to save the raw streamed content as quickly
and efficiently as possible. The following code snippet shows how to save an incoming message into
a DICOM file without parsing: (For detail implementation, please refer to mc3apps\stor_scp.c in the
distribution folder.)

/*

* To read message from the association and save the raw content

* without parsing the message's dataset, use

* MC_Read_Message_To_Tag() to read only the "group 0" part of

* the message instead of using MC_Read_Message() to read the

* entire message content.

*/

mcStatus = MC_Read_Message_To_Tag(assocID, 30, 0x00010000, /
*(0001,000) tag is just after group 0 */ &msgID, &serviceName, &com-
mand);

/*

* Get received message's transfer syntax

*/

mcStatus = MC_Get_Message_Transfer_Syntax(msgID, &messageSyntax);

/*

* Convert transfer syntax enum to UID

*/

mcStatus = MC_Get_Transfer_Syntax_From_Enum(messageSyntax, syntaxUID,
sizeof(syntaxUID));

/*

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

106© Copyright Merge Healthcare Solutions Inc. 2023

* Set transfer syntax UID in (0002,0010) using same transfer

* syntax from received message

*/

mcStatus = MC_Set_Value_From_String(msgID, MC_ATT_TRANSFER_SYNTAX-
_UID, syntaxUID);

/*

* Set the rest of group 2 attributes in the message.

* See AddGroup2ElementsFromGroup0() implementation in

* mc3apps\stor_scp.c.

*/

mcStatus = AddGroup2ElementsFromGroup0(options, msgID);

/*

* Convert the message to a file object with a filename ready

* to be written out.

*/

mcStatus = MC_Message_To_File(msgID, filename);

/*

* Stream out the DICOM part 10 file meta header (group 2) using

* MC_Message_To_Stream().

*See RawObjToFile() implementation in mc3apps\stor_scp.c.

*/

mcStatus = MC_Message_To_Stream (msgID, 0x00020000, 0x0002FFFF,
EXPLICIT_LITTLE_ENDIAN, &callbackInfo, RawObjToFile);

/*

* Continue to read the data set part of message from network

* and write to file directly using

* MC_Continue_Read_Message_To_Stream().

*/

mcStatus = MC_Continue_Read_Message_To_Stream(assocID, msgID, &call-
backInfo, RawObjToFile);

/*

* Free the message after completion

*/

mcStatus = MC_Free_File(&msgID);

NOTE: Due to the raw saving technique, non DICOM compliant messages will be saved as is and
no warning will be issued (due to no parsing of message).

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

107© Copyright Merge Healthcare Solutions Inc. 2023

4.13. DICOMDIR
As discussed earlier, in each DICOM File Set (containing many DICOM files) there must exist a sin-
gle DICOM File with the reserved File ID “DICOMDIR”. This file contains identifying information for
the file set that usually includes a directory of the file sets contents. A media interchange application
would make use of and maintain the DICOMDIR to locate a particular file within the file set for pro-
cessing.

4.13.1. Structure

An information object portion of a DICOMDIR file has a special structure that is described in Part 3
(PS 3.3) of the DICOM Standard. We described this structure earlier in this document (see the fig-
ure in 2.4.3. DICOMDIR ON PAGE 38) as a hierarchy of directory entities, where each directory entity
contains a set of semantically related directory records. These directory records can have a one-to-
one relationship to a DICOM file within the file set described by the DICOMDIR, and can also refer-
ence another (lower-level) semantically related directory entity. Directory records do not have to ref-
erence a DICOM file, they can be used solely to contain information that helps an application
navigate down the directory hierarchy to locate the desired DICOM file.

As an example, the Root directory entity might contain two Patient directory records and a Topic
directory record. One of the Patient directory records references a directory entity containing multi-
ple Series records and a Film Session record for that Patient. Each of these Series records refer-
ence directory entities containing Image records for that patient. It is these Image records that
reference the DICOM file containing the image objects acquired for the Patient whose directory
hierarchy we have traversed. See TABLE 2.6: ALLOWED DIRECTORY ENTITY ON PAGE 38 for a descrip-
tion of the allowed entity hierarchies.

This directory entity hierarchy is encoded within the DICOMDIR as a single, potentially very complex
sequence of items, where each item is a directory record. Byte offset attributes within the directory
records are used to point to other directory records within the same directory entity, as well as
lower-level directory entities (if they exist) referenced by a directory record. DICOM File IDs are
encoded in the directory record if the record references a particular DICOM file in the file set.

The key observation here is that rather than using nested Sequences of Items to encode the
DICOMDIR hierarchy, the standard chose to use a single, potentially very large, sequence of items
and byte offsets. The standard defines these byte offsets as being measured "from the first byte of
the file meta-information". As you might well imagine, the complexity of maintaining these byte off-
sets accurately, as directory records are added to or removed from directory entities within the
DICOMDIR file, is very great and can be very cumbersome.

Fortunately, the Merge DICOM Toolkit supplies functions that make DICOMDIR maintenance much
simpler for your application.

The toolkit includes a basic, in memory, DICOMDIR API (MC_Dir_... functions) and an enhanced,
on-demand/incremental DICOMDIR API (MC_DDH_... functions). The enhanced functions are
now described.

4.13.2. Opening and Navigation

Opening a DICOMDIR file is simplified compared to other DICOM files because of the specifics of
DICOMDIR. Opening an existing DICOMDIR file can be done using the MC_DDH_Open() function
by specifying the location of the file on disk. This function reads in the DICOMDIR file attributes up
to the record sequence attribute. Attributes for each record are read on demand, whenever the
application requests a record that was not read before or a record that was released from memory.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

108© Copyright Merge Healthcare Solutions Inc. 2023

A new DICOMDIR file can be created using the MC_DDH_Create() function, specifying the location
of the file, an optional File Set ID and a template file containing group 2 and 4 attributes for the new
DICOMDIR.

The identifier returned by either of these functions can be used with most value access function
(e.g. MC_Get_Value functions) with certain limitations as described in the description of these
functions.

When the application is done with the DICOMDIR object it must release the object as a regular file,
using MC_Free_File().

Navigating through a DICOMDIR

Once open, navigating a DICOMDIR usually involves calling MC_DDH_Get_First_Lower_Re-
cord() to get the first record of the root entity (e.g. the first patient record). From here MC_D-
DH_Get_Next_Record() is used to sequentially obtain further records of the root entity; while
MC_DDH_Get_First_Lower_Record() is used to get lower level entity records (e.g. study
records). MC_DDH_Get_Parent_Record() can be used to navigate up the record hierarchy.

The record identifiers obtained using the record navigation functions can be used with the
MC_Get_Value() functions to obtain record attribute values. These identifiers are valid until the
associated record object is freed. Record objects are freed automatically when the DICOMDIR
object is freed, or manually when the application calls MC_DDH_Release_Record() or MC_D-
DH_Delete_Record().

Modifications to the content of existing records are not allowed.

The toolkit provides an easy and fast way for searching and collecting data from records through the
MC_DDH_Traverse_Records() function. This function can be used for the traversal of the entire
record hierarchy or just a branch of records by setting the proper starting point through the RootID
argument. The toolkit will call the provided callback for each record encountered during traversal.
The callback can dynamically control the traversal using various return values.

Here is an example on how to use MC_DDH_Traverse_Records() to find a specific series record:

/* Find Information Structure */

typedef struct RecordFind_Struct

{

 char *matchValue;

 int matchRecordID;

 char buff[256];

} RecordFind;

/* Find callback */

MC_TRAVERSAL_STATUS FindSeriesCbk(int CrtRecID, void* CbkData)

{

 MC_STATUS status;

 MC_DIR_RECORD_TYPE recType = MC_REC_TYPE_UNKNOWN;

 RecordFind* findInfo = (RecordFind*)CbkData;

 /* Check for record type */

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

109© Copyright Merge Healthcare Solutions Inc. 2023

 MC_DDH_Get_Record_Type(CrtRecID, &recType);

 if(recType != MC_REC_TYPE_SERIES)

 return MC_TS_CONTINUE;

 /* Check for matching Series Instance UID */

 status = MC_Get_Value_To_String(CrtRecID, MC_ATT_SERIES_IN-
STANCE_UID, 256,

findInfo->buff);

 if(status == MC_NORMAL_COMPLETION)

 {

 if(strcmp(findInfo->matchValue, findInfo->buff) == 0)

 {

 /* Found a match */

 findInfo->matchRecordID = CrtRecID;

 return MC_TS_STOP;

 }

 }

 /*

* Continue traversal with the next series record

* instead of lower level instance records

*/

 return MC_TS_STOP_LOWER;

}

void FindSeries()

{

 RecordFind findInfo;

 findInfo.matchValue = "1.2.3.4.5.6.7.8.9";

 findInfo.matchRecordID = 0;

 MC_DDH_Traverse_Records(dirID, &findInfo, FindSeriesCbk);

 ...

}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

110© Copyright Merge Healthcare Solutions Inc. 2023

4.13.3. Adding and Deleting Records

The addition or deletion of directory records are handled through two simple calls: MC_DDH_Ad-
d_Record() and MC_DDH_Delete_Record(). These calls modify only the toolkit's view on the
DICOMDIR record hierarchy; to apply the changes to the DICOMDIR file the application must call
MC_DDH_Update().

When adding a record using MC_DDH_Add_Record(), you pass in the identifier of the parent
record or directory object (if adding a top level record) and optionally the record type to add. In
most of the cases the new record's type can be inferred from the type of the parent record and you
can pass a NULL for the record type. For instance level records the record type is determined by the
SOP Class of the referenced instance and the toolkit accepts the SOP Class UID as the value of the
record type.

If successful, MC_DDH_Add_Record() returns in the last parameter the identifier of the new toolkit
record which can be used with MC_Set_Value... methods to set attribute values. An easier way to
add attributes to the new record is using MC_DDH_Copy_Values() which can copy a specific set of
attribute values from a message or file object into the new record.

Automatic deletion of referenced items

When deleting a record using MC_DDH_Delete_Record(), the only parameter required is the
identifier of the record to delete. When a directory record is deleted, all lower level directory records
are also deleted and freed and the associated identifiers become invalid.

The Merge DICOM Toolkit updates and maintains all byte offsets that are part of the DICOMDIR
structure automatically.

NOTE: All the changes to a DICOMDIR are made in memory and are not committed to the media
until an MC_DDH_Update() call is made.

4.13.4. Storage of Directory Records

Depending on the type of media being used, the size of objects being stored, and how many tags
are stored, the size of a DICOMDIR can grow quite large. For this reason, the toolkit delays the read-
ing of the directory records until the application requests them. Once a directory record is read into
memory the application can call MC_DDH_Release_Record() to release the memory associated
with the record and all lower level records. The toolkit will reload any released record from the
DICOMDIR file when required.

4.14. Private Attributes
Private attributes supply a mechanism for applications to extend standard message objects and
were discussed earlier in this document. Private attributes in message objects are handled in much
the same way as standard attributes with three major exceptions:

● standard attributes in the Merge DICOM Toolkit API are referenced by Tag, while private attri-
butes are referred to by PrivateCode, Group, and ElementByte.

● The Group number of a private attribute must always be odd, while for a standard attribute it is
always even.

● Before encoding a private attribute into a message object, your application must allocate a pri-
vate block for that attribute, and then add the attribute to that private block in that message
object.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

111© Copyright Merge Healthcare Solutions Inc. 2023

Adding private attributes to a message

Private attributes are added to a message object using the MC_Add_Private_Block() and
MC_Add_Private_Attribute() calls. MC_Add_Private_Block() is used to reserve a block of
up to 256 private attributes. Taking the example earlier in this document, to add a private block to
group 1455 of myMessage with a PrivateCode of 'ACME_IMG_INC' you would make the call:

Status = MC_Add_Private_Block(myMessageID, "ACME_IMG_CORP", 0x1455);

Once reserved, a private block is referenced using a PrivateCode. The following call could then be
used to add an attribute that contains the name of a field engineer to the private block:

Status = MC_Add_Private_Attribute(myMessageID, "ACME_IMG_CORP",
0x1455, 00, PN);

Up to 255 other private attributes could be added to the ACME_IMG_CORP private block in group
1455 using the above call and ElementByte values of 01 through FF. If more attributes are required,
another private block (with a different PrivateCode) will need to be added.

PrivateCodes must be used to refer to private attributes, because private blocks may be placed in
different locations within a private group, depending on what other blocks of private attributes have
already been reserved. PrivateCodes are a way to refer to these blocks, independently of their
physical location in the message stream.

Assigning values to private attributes

Once private attributes have been added, they can be assigned values identically to standard attri-
butes, except that all the MC_Set_Value_...() functions are replaced with MC_Set_pVal-
ue_...() functions. The MC_Set_pValue_...() functions require PrivateCode, Group, and
ElementByte, rather than Tag, to identify an attribute. For example, to assign "Adams^John Rob-
ert Quincy" as the name of the field engineer, your application could call:

Status = MC_Set_pValue_From_String(myMessageID, "ACME_IMG_CORP",
0x1455, 00, "Adams^John Robert Quincy");

Retrieving values from private attributes

Similarly, retrieving values from private attributes makes use of MC_Get_pValue...() rather than
MC_Get_Value...() functions. The MC_Get_pAttribute_Info() call can also be very useful in
retrieving information about private attributes before your application begins to process them. See
the Merge DICOM Toolkit Reference Manual for further details on the handling of private attributes
with these and other calls.

4.15. Multi-threading Support
Check Platform Notes for multi-threading support

The Merge DICOM Toolkit library has been designed to be thread safe. Note, however this thread
safety is not enabled on all platforms. Check the Platform Notes to be sure that Merge DICOM Tool-
kit is thread safe on your platform.

There are some assumptions, however, concerning the thread safety of Merge DICOM Toolkit. In
most cases, it is assumed that a Merge DICOM Toolkit object is only accessed from one thread at a
time. This applies to Message objects, file objects, item objects, and association objects. Note, how-
ever, that different instances of an object can always be manipulated in different threads at the
same time.

There are exceptions to this rule, however. The following is a summary of them:

The MC_Abort_Association() function call can be called when Merge DICOM Toolkit is working
on an association in another thread. The MC_Send_Request_Message, MC_Send_Request,

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

112© Copyright Merge Healthcare Solutions Inc. 2023

MC_Send_Response_Message, MC_Send_Response, MC_Read_Message, MC_Read_To_Stream,
MC_Close_Association and
MC_Abort_Association functions can all be used in one thread while another thread is calling
MC_Abort_Association within another thread. This is useful when allowing a user to asynchro-
nously cancel an in-progress association.

It is also possible to access tags within a message as it is being read from the network. It is possible
to call the MC_Set_Value_..., MC_Set_pValue_..., MC_Get_Value_... and MC_Get_pVal-
ue_... routines from one thread while another thread is calling the MC_Read_Message_To_Tag,
MC_Continue_Read_Message, MC_Continue_Read_Message_to_Stream routines, or when
these routines are used in conjunction with a callback function registered with MC_Register_-
Callback_Function to manage pixel data.

4.16. Memory Management
Performance Tuning

Merge DICOM Toolkit contains its own memory management routines that are optimized for how it
uses memory. They have been adapted to manage specific data structures that are frequently allo-
cated by the toolkit. These include but are not limited to data structures for associations, messages,
and tags. The memory management routines have the characteristic that they do not actually "free"
the memory that has been acquired. Instead, they mark the data as being free and place the mem-
ory in a list for reuse later. These routines have been optimized to quickly acquire and free memory
being used by the toolkit. They also allow Merge DICOM Toolkit to not depend on the memory man-
agement of a particular operating system.

These memory routines have also been extended for use with variable sized memory buffers. Merge
DICOM Toolkit uses these routines to allocate buffers in sizes between 4 bytes and 28K. When an
allocation is requested, the toolkit will take the smallest buffer that will fit the bytes requested. These
buffers will be kept in the toolkit's internal memory pool and never freed. For allocations larger than
28K, Merge DICOM Toolkit will simply use the 'C' functions malloc() and free(). Under most
conditions, Merge DICOM Toolkit breaks up large DICOM data elements such as pixel data into
chunks of data smaller than 28K so that they can be managed through these routines.

The end result of these routines is that applications using Merge DICOM Toolkit typically expand to
the maximum amount of memory used at one time. The total memory allocation will not shrink from
this point. In applications that repeatedly perform a consistent operation, the memory being used
by Merge DICOM Toolkit should stabilize and not increase in size. In applications using Merge
DICOM Toolkit from multiple threads, this memory usage is not as consistent and depends on the
timing of the threads using the toolkit. As a result of these routines, the first time an application per-
forms a DICOM operation is typically slower than subsequent operations.

Merge DICOM Toolkit supplies the MC_Report_Memory() and MC_Cleanup_Memory() routines
to allow some user control over this memory management. MC_Report_Memory() reports how
much memory is currently allocated and in use by the toolkit. The MC_Cleanup_Memory() routine
can be used to actually free memory allocated by Merge DICOM Toolkit. The routine looks for blocks
of memory that are no longer in use by the toolkit and frees them with the operating system. This
can be useful when a Merge DICOM Toolkit application reads a large DICOM object (such as a large
DICOMDIR or a large multi-frame image) and the user would like to free some of the memory asso-
ciated with the object.

When developing a DICOM application with Merge DICOM Toolkit, the most memory intensive
operation is dealing with image data. The following sections discuss various Merge DICOM Toolkit
functions. A description is given of how these functions manage memory in conjunction with vari-
ous toolkit configuration settings.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

113© Copyright Merge Healthcare Solutions Inc. 2023

4.16.1. Assigning Pixel Data

MC_Set_Value_From_Function

MC_Set_Value_From_Function() is used to assign OB, OW, OV, OL, OF or OD data to a DICOM
tag. These value representations are used to store image data or other large data elements.
MC_Set_Value_From_Function() is described in further detail elsewhere in this manual.

Data can be passed to Merge DICOM Toolkit via MC_Set_Value_From_Function() in several
ways. The entire data can be passed in a single call, or the data can be supplied in several smaller
chunks. When passed data, MC_Set_Value_From_Function() will allocate a buffer the size of
the chunk passed to it and copy the data into this buffer for storage.

The size of data passed to MC_Set_Value_From_Function() will dictate how the image data is
stored. If the data is passed in chunks smaller than 28K, Merge DICOM Toolkit's internal memory
management code will be used. If the chunks are larger than 28K, malloc() will be used to allocate
storage for the buffers. If large images are being dealt with, it may be desirable to pass this data in
chunks larger than 28K, so the memory is freed after processing has been completed for the image.
This will keep the nominal memory usage of Merge DICOM Toolkit lower. When passing data in
chunks less than 28K, it is recommended that sizes of 16K, 20K, 24K, or 28K be used. Using these
size chunks will reduce the overhead in storing the data.

MC_Set_Value_From_Function() can also be directed to store data in temporary files. The
LARGE_DATA_STORE and LARGE_DATA_SIZE configuration options in the mergecom.pro file dic-
tate when data is stored in temporary files. When the LARGE_DATA_STORE option is set to FILE,
data elements that are larger than configured by the LARGE_DATA_SIZE option are stored in tem-
porary files. The size of the buffer passed to MC_Set_Value_From_Function() does not have an
effect on memory usage.

4.16.2. Reading Messages from the Network

MC_Read_Message

Merge DICOM Toolkit has a single function for reading messages from the network. MC_Read_Mes-
sage() creates a message object and loads the message into memory while reading from the net-
work. When using Merge DICOM Toolkit's standard memory management routines, the method for
storing the image data can be influenced.

Data is read from the network by PDUs. However, it is stored internally in sizes dictated by the
WORK_BUFFER_SIZE configuration value. If a chunk of data read is smaller than the value for the
WORK_BUFFER_SIZE, the chunk will simply be stored. If it is larger, the data will be stored internally
in WORK_BUFFER_SIZE buffers.

By supporting a maximum PDU size and WORK_BUFFER_SIZE larger than 28K, Merge DICOM Tool-
kit will store the buffers in memory allocated with the 'C' function malloc(). This can be used to
reduce the toolkit's typical memory usage. Note, however, that SCU systems do not necessarily size
their PDUs according to the Maximum PDU size negotiated. This solution does not guarantee that
image data will be stored with malloc().

As is the case when assigning image data with MC_Set_Value_From_Function(), the LARGE_-
DATA_STORE and LARGE_DATA_SIZE configuration options can be used to store the data in tem-
porary files.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

114© Copyright Merge Healthcare Solutions Inc. 2023

4.16.3. Loading Messages from Disk

MC_Open_File, MC_Stream_To_Message

This functionality shares the same characteristics as when data is being read from the network with
MC_Read_Message(). MC_Stream_To_Message() is used to read DICOM "stream" objects and
MC_Open_File(), MC_Open_File_Bypass_OBOW, MC_Open_File_Upto_Tag and MC_Open_-
File_Upto_Tag_Bypass_Value() are used to read DICOM Part 10 format files. Whereas objects
being read from the network determine memory usage by the PDU size, these functions determine
memory usage by the size of the buffers passed from their callback functions. The WORK_BUFFER_-
SIZE configuration value has the same impact as when reading from the network.

If the data is stored in file format, the MC_Open_File_Bypass_OBOW(), MC_Open_File_Up-
to_Tag() or MC_Open_File_Upto_Tag_Bypass_Value() functions can be used to leave the
image data on disk until it is sent over the network.

4.16.4. Using Registered Callbacks

MC_Register_Callback_Function

Merge DICOM Toolkit also supplies a method to allow the user to manage image data through the
use of registered callback functions. MC_Register_Callback_Function associates a callback
function with a DICOM attribute such as pixel data. These callbacks are limited to attributes with the
value representations of OB, OW, OV, OL, OD or OF. When encountered, the attribute's data is
passed to the registered callback function instead of being stored within Merge DICOM Toolkit. The
callback is also used to supply the attribute's data. The size of data elements for which to use call-
backs can also be specified. The CALLBACK_MIN_DATA_SIZE configuration option can specify the
minimum size or length required for use of a registered callback function.

There are three models in which MC_Register_Callback_Function can be used. First, it can be
used to seamlessly replace Merge DICOM Toolkit's memory management functions. Use of this
function can for the most part be hidden from the application. Secondly, the function can be used
as an interface to receive or supply data only when it is needed. When writing a network application,
the image data can be supplied to the user directly as it is read off the network. The data can also be
supplied when it is about to be written to the network. This functionality can also be used when cre-
ating and reading DICOM files. Finally, MC_Register_Callback_Function can be used to save
an image to disk as it is received over the network.

a. Replacing Merge DICOM Toolkit's Memory Management Functions
for Pixel Data

When using MC_Register_Callback_Function to replace Merge DICOM Toolkit's memory
management functions, the user would still use MC_Get_Value_To_Function and MC_Set_Val-
ue_From_Function to access the image. When requested, Merge DICOM Toolkit will receive or
supply the attribute's value to the registered callback. There are several additional requirements for
this to function properly. MC_Set_Message_Callbacks must be called for the message or item
before calling MC_Set_Value_From_Function. MC_Set_Message_Callbacks associates the
callback function registered to a specific application to a message. Also, when a message or file
object's memory is released, the registered callback function is not notified. There must be a link in
the user's application between the registered callback and the code that is freeing the object.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

115© Copyright Merge Healthcare Solutions Inc. 2023

b. Accessing Data When Needed

When dealing with large multi-frame images, it is sometimes impractical to load the entire image
into memory at once. MC_Register_Callback_Function can be used to access image data only
when needed. The memory requirements of an application can be greatly reduced by using this
functionality.

When reading messages from the network, MC_Read_Message supplies the user's registered call-
back function with the image data. If the data does not need to be byte swapped into the system's
native endian, the amount of data supplied with each call is dictated by the PDU size of the data
received. When the data is byte swapped, the length of data is specified by the WORK_BUFFER_SIZE
configuration value. As the data is received, it would typically be written to disk in this scenario.
When MC_Read_Message returns, the user is given the message read from the network. The mes-
sage object still contains a link to the registered callback function. This link can be removed by call-
ing MC_Set_Value_To_Empty. The header data can then be examined and later written to disk.

When sending data over the network, MC_Send_Request_Message will call the user's registered
callback function for the image data. The data can be supplied to Merge DICOM Toolkit in any
length as required by the user's application. The data is typically read from disk at this point and
directly passed to Merge DICOM Toolkit. After MC_Send_Request_Message receives the data, it
byte swaps the data if needed, and then writes it to the network.

This functionality is conducive to storing a message's header data separately from its image data.
Depending on system requirements, this may be an aid in quickly loading image data while bypass-
ing Merge DICOM Toolkit. The complete image file can be reassembled later using Merge DICOM
Toolkit.

c. Saving Received Images Directly to Disk

In conjunction with the registered callback function, data can also be stored directly to disk when it
is being read. The image header data can be written to disk from within the registered callback. The
user must write the attribute tag, value representation if needed, and the length of the image data
attribute to the file. The image data is written to the file in subsequent calls to the user's registered
callback function.

When MC_Read_Message is parsing a message being received, it will notify the user's registered
callback function when it has parsed the header information and determines the image data's
length. The registered callback function will be called with the PROVIDING_DATA_LENGTH flag and
is supplied the Message ID of the message being read. At this point, the user can stream the header
file to disk with MC_Message_To_Stream. As the image data is received, it can be added to the end
of this file.

Data can also be stored as DICOM files with this method. The message cannot be converted into a
file object at this point with MC_Message_To_File as would normally be done. So, a separate file
must be created to add the DICOM Part 10 Meta Header information. This header can be written out
from within the callback. After the end of the meta header, the message can be streamed to disk
with a call to MC_Message_To_Stream in the transfer syntax specified in the Meta Header. As sub-
sequent image data is passed to the user's callback function, the data can be written to file.
Because the endian of the transfer syntax being written may be different than the endian of the sys-
tem being used, there may be a need for byte swapping of the pixel data in this implementation.

There is a potential risk with this implementation. Although the current definition of the DICOM
image types does not include any data elements after the pixel data, future versions may add data
elements there.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

116© Copyright Merge Healthcare Solutions Inc. 2023

4.17. DICOM Structured Reporting
The Merge DICOM Toolkit provides high-level functionality to handle DICOM Structured Report
(SR) Documents. This functionality provides a simple way for encoding and decoding SR Docu-
ment content by manipulating content items and their attributes instead of tags and values.

4.17.1. Structured Report Structure and Modules

The DICOM standard Part 3 defines the following generic types of SR Information Object Defini-
tions (IODs):

● Basic Text SR Information Object Definition — The Basic Text Structured Report (SR) IOD is
intended for the representation of reports with minimal usage of coded entries (typically used in
Document Title and headings) and a hierarchical tree of headings under which may appear text
and subheadings. Reference to SOP Instances (e.g. images or waveforms or other SR Docu-
ments) is restricted to appear at the level of the leaves of this primarily textual tree. This struc-
ture simplifies the encoding of conventional textual reports as SR Documents, as well as their
rendering.

● Enhanced SR Information Object Definition — The Enhanced Structured Report (SR) IOD is a
superset of the Basic Text SR IOD. It is also intended for the representation of reports with min-
imal usage of coded entries (typically Document Title and headings) and a hierarchical tree of
headings under which may appear text and subheadings. In addition, it supports the use of
numeric measurements with coded measurement names and units. Reference to SOP
Instances (e.g. images or waveforms or SR Documents) is restricted to appear at the level of the
leaves of this primarily textual tree. It enhances references to SOP Instances with spatial regions
of interest (points, lines, circle, ellipse, etc.) and temporal regions of interest.

● Comprehensive SR Information Object Definition — The Comprehensive SR IOD is a superset
of the Basic Text SR IOD and the Enhanced SR IOD, which specifies a class of documents, the
content of which may include textual and a variety of coded information, numeric measurement
values, references to the SOP Instances and spatial or temporal regions of interest within such
SOP Instances. Relationships by-reference are enabled between Content Items.

There are more specific SR IODs defined in the DICOM, like Key Object Selection Document and
Mammography CAD SR. Those IODs use the same way to encode data and the difference is in the
constrains on the Content Item Types and their relationships. The figure below illustrates the typical
SR Document structure. As you can see, the top level header is very similar to the DICOM image
IODs and consists of the same Patient, Study and Series modules. The main difference from other
IODs is the SR Document Content Module. The attributes in this Module convey the content of an
SR Document.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

117© Copyright Merge Healthcare Solutions Inc. 2023

The SR Document hierarchy

The Document Content Module has a tree structure and consists of a single root Content Item
(Node 1) that is the root of the SR Document tree. The root Content Item conveys either directly or
indirectly all of the other nested Content Items in the document. The hierarchical structuring of the
Content Tree provided by recursively nesting Content Items. A parent (or source) Content Item has
an explicit relationship to each child (or target) Content Item, conveyed by the Relationship Type.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

118© Copyright Merge Healthcare Solutions Inc. 2023

The figure below depicts the relationship of SR Documents to Content Items and the relationships
of Content Items to other Content Items and to Observation Context.

Each Content Item contains the following:

● A name/value pair, consisting of:

● a single Concept Name Code that is the name of a name/value pair or a heading; and

● a value (text, numeric, code, etc.).

● References to images, waveforms or other composite objects, with or without coordinates.

● Relationships to other Items, either by-value through nested Content Sequences, or by-refer-
ence.

NOTE: Some Content Item Types can have multiple values.

4.17.2. Content Item Types

The following table defines all possible Content Item Types that can be used in the SR Document
Content Module. The choice of which may be constrained by the IOD in which this Module is con-
tained. Merge DICOM Toolkit Definition column specifies the enumerated value used in the Toolkit
to identify the Content Item Type.

Table 4.17: SR Content Item Types

Item Type Merge DICOM Toolkit
Definition

Concept Name Description

TEXT SR_NODE_TEXT Type of text, for example,
“Findings”, or name of
identifier, for example,
“Lesion ID”

Free text, narrative description of
unlimited length. May also be used
to provide a label or identifier
value.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

119© Copyright Merge Healthcare Solutions Inc. 2023

NUM SR_NODE_NUM Type of numeric value or
measurement, for exam-
ple, “BPD”

Numeric value fully qualified by
coded representation of the mea-
surement name and unit of mea-
surement.

CODE SR_NODE_CODE Type of code, for exam-
ple, “Findings”

Categorical coded value. Repre-
sentation of nominal or non-
numeric ordinal values.

DATETIME SR_NODE_DATETIME Type of DateTime, for
example, “Date/Time of
onset”

Date and time of occurrence of
the type of event denoted by the
Concept Name.

DATE SR_NODE_DATE Type of Date, for example,
“Birth Date”

Date of occurrence of the type of
event denoted by the Concept
Name.

TIME SR_NODE_TIME Type of Time, for exam-
ple, “Start Time”

Time of occurrence of the type of
event denoted by the Concept
Name.

UIDREF SR_NODE_UIDREF Type of UID, for example,
“Study Instance UID”

Unique Identifier (UID) of the
entity identified by the Concept
Name.

PNAME SR_NODE_PNAME Role of person, for exam-
ple, “Recording
Observer”

Person name of the person whose
role is described by the Concept
Name.

COMPOSITE SR_NODE_COMPOSITE Purpose of Reference A reference to one Composite
SOP Instance which is not an
Image or Waveform.

IMAGE SR_NODE_IMAGE Purpose of Reference A reference to one Image. IMAGE
Content Item may convey a refer-
ence to a Softcopy Presentation
State associated with the Image.

WAVEFORM SR_NODE_WAVEFORM Purpose of Reference A reference to one Waveform.

SCOORD SR_NODE_SCOORD Purpose of Reference Spatial coordinates of a geometric
region of interest in the DICOM
image coordinate system. The
IMAGE Content Item from which
spatial coordinates are selected is
denoted by a SELECTED FROM
relationship.

SCOORD3D SR_NODE_SCOORD3D Purpose of Reference 3D spatial coordinates (x, y, z) of a
geometric region of interest in a
Reference Coordinate System.

Item Type Merge DICOM Toolkit
Definition

Concept Name Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

120© Copyright Merge Healthcare Solutions Inc. 2023

4.17.3. Relationship Types between Content Items

The following table describes the Relationship Types between Source Content Items and the Target
Content Items. The choice of which may be constrained by the IOD in which this Module is con-
tained. Merge DICOM Toolkit Definition column specifies the enumerated value used in the Toolkit
to identify the Content Item Relationship.

Table 4.18: SR Relationship Types

TCOORD SR_NODE_TCOORD Purpose of Reference Temporal Coordinates (i.e. time or
event based coordinates) of a
region of interest in the DICOM
waveform coordinate system. The
WAVEFORM or IMAGE or SCO-
ORD Content Item from which
Temporal Coordinates are
selected is denoted by a
SELECTED FROM relationship.

CONTAINER SR_NODE_CONTAINER Document Title or docu-
ment section heading.
Concept Name conveys
the Document Title (if the
CONTAINER is the Docu-
ment Root Content Item)
or the category of obser-
vation.

CONTAINER groups Content
Items and defines the heading or
category of observation that
applies to that content. The head-
ing describes the content of the
CONTAINER Content Item and
may map to a document section
heading in a printed or displayed
document.

TABLE SR_NODE_TABLE Purpose of the tabulated
data

Table of text, numeric or datetime
values.

Item Type Merge DICOM Toolkit
Definition

Concept Name Description

Relationship Type Merge DICOM Toolkit
Definition

Description

CONTAINS SR_REL_CONTAINS Source Item contains Target Content Item. For example:
CONTAINER “History” {CONTAINS: TEXT: “mother had
breast cancer”; CONTAINS IMAGE 36}

HAS OBS CONTEXT SR_REL_HAS_OBS_-
CONTEXT

Has Observation Context. Target Content Items shall
convey any specialization of Observation Context
needed for unambiguous documentation of the Source
Content Item.
For example: CONTAINER: “Report” {HAS OBS CON-
TEXT: PNAME: “Recording Observer” =
“Smith^John^^Dr^”}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

121© Copyright Merge Healthcare Solutions Inc. 2023

4.17.4. Content Item Identifier

Content Items are identified by their position in the Content Item tree. They have an implicit order
as defined by the order of the Sequence Items. When a Content Item is the target of a by reference
relationship, its position is specified as the Referenced Content Item Identifier in the source Con-
tent Item. The figure below illustrates an SR content tree and identifiers associated with each Con-
tent Item:

HAS CONCEPT
MOD

SR_REL_HAS_CON-
CEPT_MOD

Has Concept Modifier. Used to qualify or describe the
Concept Name of the Source Content item, such as to
create a post-coordinated description of a concept, or
to further describe a concept.
For example: CODE “Chest X-Ray” {HAS CONCEPT
MOD: CODE “View = PA and Lateral”}
For example: CODE “Breast” {HAS CONCEPT MOD:
TEXT “French Translation” = “Sein”}
For example: CODE “2VCXRPALAT” {HAS CONCEPT
MOD: TEXT “Further Explanation” = “Chest X-Ray, Two
Views, Posteroanterior and Lateral”}

HAS PROPERTIES SR_REL_HAS_PROPER-
TIES

Description of properties of the Source Content Item.
For example: CODE “Mass” {HAS PROPERTIES: CODE
“anatomic location”, HAS PROPERTIES: CODE “diame-
ter”, HAS PROPERTIES: CODE “margin”, ...}.

HAS ACQ CON-
TEXT

SR_REL_HAS_ACQ_-
CONTEXT

Has Acquisition Context. The Target Content Item
describes the conditions present during data acquisi-
tion of the Source Content Item.
For example: IMAGE 36 {HAS ACQ CONTEXT: CODE
“contrast agent”, HAS ACQ CONTEXT: CODE “position
of imaging subject”, ...}.

INFERRED FROM SR_REL_INFERRED_-
FROM

Source Content Item conveys a measurement or other
inference made from the Target Content Items. Denotes
the supporting evidence for a measurement or judg-
ment.
For example: CODE “Malignancy” {INFERRED FROM:
CODE “Mass”, INFERRED FROM: CODE “Lymphade-
nopathy”,...}.
For example: NUM: “BPD = 5mm” {INFERRED FROM:
SCOORD}.

SELECTED FROM SR_REL_SELECTED_-
FROM

Source Content Item conveys spatial or temporal coor-
dinates selected from the Target Content Item(s).
For example: SCOORD: “CLOSED 1,1 5,10” {SELECTED
FROM: IMAGE 36}.
For example: TCOORD: “SEGMENT 60-200mS”
{SELECTED FROM: WAVEFORM}.

Relationship Type Merge DICOM Toolkit
Definition

Description

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

122© Copyright Merge Healthcare Solutions Inc. 2023

4.17.5. Observation Context

Observation Context describes who or what is performing the interpretation, whether the examina-
tion of evidence is direct or quoted, what procedure generated the evidence that is being inter-
preted, and who or what is the subject of the evidence that is being interpreted.

Initial Observation Context is defined outside the SR Document Content tree by other modules in
the SR IOD (i.e., Patient Module, Specimen Identification, General Study, Patient Study, SR Docu-
ment Series, Frame of Reference, Synchronization, General Equipment and SR Document General
modules). Observation Context defined by attributes in these modules applies to all Content Items
in the SR Document Content tree and need not be explicitly coded in the tree. The initial Observa-
tion Context from outside the tree can be explicitly replaced.

If a Content Item in the SR Document Content tree has Observation Context different from the
context already encoded elsewhere in the IOD, the context information applying to that Content
Item shall be encoded as child nodes of the Content Item in the tree using the HAS OBS CONTEXT
relationship. That is, Observation Context is a property of its parent Content Item.

The context information specified in the Observation Context child nodes (i.e. target of the HAS
OBS CONTEXT relationship) adds to the Observation Context of their parent node Content item,
and shall apply to all the by-value descendant nodes of that parent node regardless of the relation-
ship type between the parent and the descendant nodes. Observation Context is encoded in the
same manner as any other Content Item. Observation Context shall not be inherited across by-ref-
erence relationships.

Observation DateTime is not included as part of the HAS OBS CONTEXT relationship, and therefore
is not inherited along with other Observation Context. The Observation DateTime Attribute is
included in each Content Item which allows different observation dates and times to be attached to
different Content Items.

The IOD may specify restrictions on Content Items and Relationship Types that also constrain the
flexibility with which Observation Context may be described.

The IOD may specify Templates that offer or restrict patterns and content in Observation Context.

4.17.6. Structured Reporting Templates

Templates are patterns that specify the Concept Names, Requirements, Conditions, Value Types,
Value Multiplicity, Value Set restrictions, Relationship Types and other attributes of Content Items
for a particular application. SR Document templates are defined in the Part 16 of the DICOM Stan-
dard. Part 17 of the DICOM also has some explanatory information on encoding SR Documents. The

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

123© Copyright Merge Healthcare Solutions Inc. 2023

Merge DICOM Toolkit SR Functions follow DICOM Templates structures and allow straightforward
encoding based on template tables.

SR Templates are described using tables of the form shown in the table below.

Table 4.19: SR Template Definition

a. Row Number

Each row of a Template Table is denoted by a row number. The first row is numbered 1 and subse-
quent rows are numbered in ascending order with increments of 1. This number denotes a row for
convenient description as well as reference in conditions. The Row Number of a Content Item in a
Template may or may not be the same as the ordinal position of the corresponding node in the
encoded document. The Merge DICOM Toolkit does not use this number in any way.

b. Nesting Level (NL)

The nesting level of Content Items is denoted by “>” symbols, one per level of nesting below the ini-
tial Source Content Item (of the Template) in a manner similar to the depiction of nested
Sequences of Items in Module Tables in Part 3 of the DICOM standard. When it is necessary to
specify the Target Content Item(s) of a relationship, they are specified in the row(s) immediately fol-
lowing the corresponding Source Content Item. The Merge DICOM Toolkit provides functions to
add nested (child) Content Items to the parent Content Item node. The following function pattern
shall be used to add a child node with the specific type and relationship:

MC_SRH_Add_Type_Child((int AsrNodeID, SR_RELATIONSHIP Arelationship,
...)

where Type is a child Content Item Type, for example “TEXT”.

c. Relationship with Source Content Item (Parent)

Relationship Type and Mode are specified for each row that specifies a target content item. The
Relationship Types are enumerated in TABLE 4.18: SR RELATIONSHIP TYPES ON PAGE 120.

Relationship Type and Mode may also be specified when another Template is included, either "top-
down" or "bottom-up" or both (i.e., in the "INCLUDE Template" row of the calling Template or in all
rows of the included Template or in both places). There shall be no conflict between the Relation-
ship Type and Mode of a row that includes another Template and the Relationship Type and Mode of
the rows of the included Template.

When the relationship is defined in a form as R-RTYPE, it means that Relationship Mode is "By-ref-
erence "and Relationship Type is "RTYPE". For example, "R INFERRED FROM". Merge DICOM Tool-
kit provides the following functions to encode/decode references:

MC_STATUS EXP_FUNC MC_SRH_Add_Reference(int AsrNodeID,

 SR_RELATIONSHIP Arelationship,

NL Rel with
Parent

VT Concept
Name

VM Req Type Condition Value Set
Constraint

1

2

3

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

124© Copyright Merge Healthcare Solutions Inc. 2023

int AsrRefNodeID)

MC_STATUS EXP_FUNC MC_SRH_Get_Reference(int AsrNodeID,

int *AsrRefNodeID)

d. Value Type (VT)

The Value Type field specifies the SR Value Type of the Content Item or conveys the word
"INCLUDE" to indicate that another Template is to be included (substituted for the row). The Merge
DICOM Toolkit uses explicit function calls for each Content Item Type as is described above.

e. Concept Name

Any constraints on Concept Name are specified in this field as defined or enumerated coded
entries or as baseline or defined context groups. Alternatively, when the VT field is “INCLUDE”, the
Concept Name field specifies the template to be included. The Merge DICOM Toolkit uses following
arguments to specify the Concept Name:

const char *AconceptNameValue,

const char *AconceptNameScheme,

const char *AconceptNameMeaning

You will find that some of the functions do not include Concept Name arguments, because they are
optional for those Content Item Types. In that case, a separate function can be used to set the Con-
cept Name values as follows:

MC_STATUS EXP_FUNC MC_SRH_Set_Concept_Name(

intAsrNodeID,

const char *AconceptNameValue,

const char *AconceptNameScheme,

const char *AconceptNameMeaning)

Templates defining References to coded concepts take the following form:

EV or DT (ConceptNameValue, ConceptNameSheme, "ConceptNameMeaning")

For example, EV (T-04000, SNM3, "Breast") would mean that hardcoded values shall be used for
that Concept Name. Some template items don't have DT or EV abbreviation and just specify the
hardcoded values.

Abbreviations used in templates

The following abbreviations are used in template definitions:

● EV Enumerated Value -values for are provided in the brackets.

● DT Defined Term -values are provided in the brackets.

● BCID Baseline Context Group ID - identifier that specifies the suggested Context Group. The
suggested values can be found in DICOM Part 16 and identified by a Context ID provided in the
brackets.

● DCID Defined Context Group ID - identifier that specifies the Context Group for a Coded Value
that shall be used. The values can be found in DICOM Part 16 and identified by a Context ID pro-
vided in the brackets.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

125© Copyright Merge Healthcare Solutions Inc. 2023

● BTID Baseline Template ID - identifier that specifies a template suggested to be used in the cre-
ation of a set of Content Items. The referenced template can be found in DICOM Part 16 and
identified by a Template ID provided in the brackets.

● DTID Defined Template ID - identifier that specifies a template that shall be used in the creation
of a set of Content Items. The referenced template can be found in DICOM Part 16 and identi-
fied by a Template ID provided in the brackets.

f. Value Multiplicity (VM)

The VM field indicates the number of times that either a Content Item of the specified pattern or an
included Template may appear in this position. The table below specifies the values that are permit-
ted in this field.

Table 4.20: Permitted Values for VM

g. Requirement Type

The Requirement Type field specifies the requirements on the presence or absence of the Content
Item or included Template. The following symbols are used:

● M - Mandatory. Shall be present.

● MC - Mandatory Conditional. Shall be present if the specified condition is satisfied.

● U - User Option. May or may not be present.

● UC - User Option Conditional. May not be present. May be present according to the specified
condition.

h. Condition

The Condition field specifies any conditions upon which the presence or absence of the Content
Item or its values depends. This field specifies any Concept Name(s) or Values upon which there
are dependencies.

References may also be made to row numbers (e.g. to specify exclusive OR conditions that span
multiple rows of a Template table).

The following abbreviations are used:

● XOR - Exclusive OR. One and only one row shall be selected from mutually exclusive options.

NOTE: For example, if one of rows 1, 2, 3 or 4 may be included, then for row 2, the abbreviation
“XOR rows 1,3,4” is specified for the condition.

● IF - Shall be present if the condition is TRUE; may be present otherwise.

● IFF - If and only if . Shall be present if the condition is TRUE; shall not be present otherwise.

Expression Definition

i (where 'i' rep-
resents an integer)

Exactly i occurrences, where i >= 1. E.g. when i == 1 there shall be one occurrence of
the Content Item in this position.

i-j From i to j occurrences, where i and j are >= 1 and j > i.

1-n One or more occurrences.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

126© Copyright Merge Healthcare Solutions Inc. 2023

● CV - Code Value

● CSD - Coding Scheme Designator

● CM - Code Meaning

● CSV - Coding Scheme Version

i. Value Set Constraint

Value Set Constraints, if any, are specified in this field as defined or enumerated coded entries, or as
baseline or defined context groups.

The Value Set Constraint column may specify a default value for the Content Item if the Content
Item is not present, either as a fixed value, or by reference to another Content Item, or by reference
to an Attribute from the dataset other than within the Content Sequence (0040,A730).

j. Inclusion of Templates

A Template may include another Template by specifying “INCLUDE” in the Value Type field and the
identifier of the included Template in the Concept Name field. All of the rows of the specified Tem-
plate are included in the invoking Template, effectively substituting the specified template for the
row where the inclusion is invoked. Whether or not the inclusion is user optional, mandatory or con-
ditional is specified in the Requirement and Condition fields. The number of times the included
Template may be repeated is specified in the VM field.

We recommend that you implement templates as a subroutine or function call. In that case, the
inclusion of the template will be implemented as a call to that template with passing parameters.
Some of the templates defined in DICOM Part 16 already have predefined parameters and they are
indicated by a name beginning with the character “$”.

4.17.7. Memory Management

The Structured Reporting API is designed in such way that you only deal with types of objects:

● Message objects which are messages and message items.

● Structured Report objects which are the root SR Content Item and child Content Items.

You can convert back and forth between these objects and work with one object type at a time.
However, it is imported to know how these objects are managed internally.

Structured Report Content Items are represented as a special SR objects in the memory. Each
object is represented by the integer object ID that is also called a Node ID. The ID value for SR
Objects is the same as the item ID or Message ID of the underlying message object. SR objects are
always mapped to the message objects and use them as attribute storage. This allows you to use SR
object ID in the basic toolkit functions like MC_Set_Value. Deletion of the SR Object does not
delete the underlying item object. The figure below shows the relationship between the SR tree and
the message object:

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

127© Copyright Merge Healthcare Solutions Inc. 2023

When a message or item object is mapped with the SR object, it is marked with a special flag that
prohibits some of the operations that can break the structured report hierarchy. For example, MC_-
Duplicate_Message will not work on the messages mapped with the SR object.

4.17.8. Overview of the Merge DICOM Toolkit SR Functions

The Merge DICOM Toolkit has several types of functions that can be used for reading/writing Struc-
tured Report IODs.

Low-level attribute access functions — These are the same functions that are used to work with
attributes in message objects. Every SR Content Item ID is mapped to the Message Item ID and can
be used to set or get additional attributes that are not covered by the High Level API.

Low-level navigation and conversion functions — These functions provide mapping and conver-
sion between message objects and SR objects (Content Items). Following functions are included:

● MC_SR_Add_Root — Creates a new SR root object and maps it to the existing message
object.

● MC_Message_To_SR — Creates SR tree structure from the message and maps each SR
Content Item with the corresponding message item.

● MC_SR_Add_Child — Creates a new SR Content Item and maps it to the existing message
item.

● MC_SR_Get_First_Child — Retrieves the first child Content Item object ID.

● MC_SR_Get_Next_Child — Retrieves the next child Content Item object ID.

● MC_SR_Delete_Child — Deletes a child Content Item.

● MC_SR_To_Message — Releases memory allocated by SR tree objects and rebuilds under-
lying message object.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

128© Copyright Merge Healthcare Solutions Inc. 2023

High-Level functions for encoding SR — These functions can be used to build an entire SR docu-
ment tree with minimum coding. The following functions are included:

● MC_SRH_Create_SR — Creates an empty SR root object

● MC_SRH_Add_Type_Child — Adds a new child node, where Type is a child Content Item
Type, for example “TEXT”.

● MC_SRH_Set_Type_Data — Sets additional attributes for the Content Item node.

● MC_SRH_Add_Reference — Creates a reference to another Content Item node “by refer-
ence”.

● MC_SRH_Free_SR — Releases all memory associated with the SR object including the
underlying message object. Can be used for cleanup in case of failure.

High-Level functions for reading SR — These functions quickly navigate the SR content tree and
access Content Item's attributes. The following functions are included:

● MC_SRH_Get_First_Child — Retrieves the first child Content Item, relationship and node
type.

● MC_SRH_Get_Next_Child — Retrieves the next child Content Item, relationship and node
type.

● MC_SRH_Get_Reference — Retrieves the Content Item referenced “by reference”.

● MC_SRH_Get_Type_Data — Retrieves attributes of the Content Item, where Type is a child
Content Item Type, for example “DATE”.

High-Level utility functions — These functions are used internally by the other high-level functions
and exposed to provide greater flexibility to the user. The following functions are included in that
group:

● MC_SRH_Create_Type_Node — Creates a new Content Item node specified by Type. The
node is created as a standalone Message Item, without SR object.

● MC_SRH_Add_Child — Adds newly created Content Item node to an existing Content Item
node as a child.

4.17.9. Encoding SR Documents

The creation of the SR document involves the following steps:

1. Create a new SR object as a root node.

2. Add Content Items (nodes) to the tree, based on the template definitions.

3. Convert SR object to a message object.

4. Add Patient/Study/Series and other attributes required by the IOD definition.

5. Save the result message object to a file.

To create a new SR, you need to know the IOD type you are creating and the templates that will be
used to generate the SR Document Content.

a. Key Object Selection Example

The Key Object Selection document is constrained by a single template. The following template is
taken from Part 16 of the DICOM standard.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

129© Copyright Merge Healthcare Solutions Inc. 2023

TID 2010
KEY OBJECT SELECTION
Type: Non-Extensible

NL Rel with
Parent

VT Concept
Name

VM Req
Type

Condition Value Set
Constraint

1 > CONTAINER DCID(7010)
Key Object
Selection
Document
Titles

1 M Root node

2 > HAS CON-
CEPT MOD

CODE EV (113011,
DCM, “Docu-
ment Title
Modifier”)

1-n U

3 > HAS CON-
CEPT MOD

CODE EV (113011,
DCM, “Docu-
ment Title
Modifier”)

1 UC IF Row 1 Concept
Name = (113001,
DCM, “Rejected
for Quality Rea-
sons”) or (113010,
DCM,” Quality
Issue”)

DCID
(7011)

4 > HAS CON-
CEPT MOD

CODE EV (113011,
DCM, “Docu-
ment Title
Modifier”)

1 MC IF Row 1 Concept
Name = (113013,
DCM, “Best In
Set”)

DCID
(7012)

5 > HAS CON-
CEPT MOD

INCLUDE DTID(1204)
Language of
Content Item
and Descen-
dants

1 U

6 > HAS OBS
CONTEXT

INCLUDE DTID(1002)
Observer
Context

1-n U

7 > CONTAINS TEXT EV(113012,
DCM, “Key
Object
Description”)

1 U

8 > CONTAINS IMAGE Purpose of
Reference
shall not be
present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

9 > CONTAINS WAVEFORM Purpose of
Reference
shall not be
present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

10 > CONTAINS COMPOSITE Purpose of
Reference
shall not be
present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

130© Copyright Merge Healthcare Solutions Inc. 2023

The code below generates a valid DICOM KO object and illustrates how the template is encoded
using the Merge DICOM Toolkit functions.

static char* fileName = "KO_demo.dcm";

MC_STATUS status;

int srID, childID, tempId, item1, item2, item3;

unsigned short miVer = 0x0100;

/*

* Create SR Document as well as the root CONTAINER.

* The template ID is 2010 and we used the "Best in Set"

* context ID from the CID 7010.

*/

status = MC_SRH_Create_SR("KEY_OBJECT_SELECTION_DOC", "2010", SR_C-
C_SEPARATE,"113013","DCM", "Best In Set", &srID);

if(status != MC_NORMAL_COMPLETION)

{

 /* process error here */

 return;

}

/*

* Skipping Row 2 and 3 of the template and encoding Row 4.

* The code is taken from the CID 7012.

*/

status = MC_SRH_Add_CODE_Child(srID, SR_REL_HAS_CONCEPT_MOD,
"113011", "DCM", "Document Title Modifier", "113015", "DCM",
"Series", &childID);

if(status != MC_NORMAL_COMPLETION)

{

 /* process error here */

 return;

}

/*

* Skipping Row 5 and 6 of the template and encoding Row 7.

* The code is taken from the CID 7012.

* The text value shall describe the image selection.

*/

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

131© Copyright Merge Healthcare Solutions Inc. 2023

status = MC_SRH_Add_TEXT_Child(srID, SR_REL_CONTAINS, "113012",
"DCM", "Key Object Description", "Doctor's comments on selection",
&childID);

if(status != MC_NORMAL_COMPLETION)

{

 /* process error here */

 return;

}

/*

* Adding an IMAGE from Row 8.

* The values "1.2.3.4.1", "1.2.3.4.5.1" suppose to be an image SOP
Class

* and SOP Instance.

*/

status = MC_SRH_Add_IMAGE_Child(srID, SR_REL_CONTAINS, "1.2.3.4.1",
"1.2.3.4.5.1", &childID);

if(status != MC_NORMAL_COMPLETION)

{

 /* process error here */

 return;

}

/*

* Convert SR to the message

*/

status = MC_SR_To_Message(srID); if(status != MC_NORMAL_COMPLETION)

{

 /* process error here */

 return;

}

/*

* Add other root level attributes

* The error handling is skipped here in order to make a compact code

* Please add eeror handling if you use it.

*/

/* Set file meta information */

MC_Set_Value_From_Buffer(srID, MEDIA_FILE_META_INFO_VER, &miVer,
sizeof(miVer));

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

132© Copyright Merge Healthcare Solutions Inc. 2023

MC_Set_Value_From_String(srID, MEDIA_TRANSFER_SYNTAX_UID,
"1.2.840.10008.1.2.1");

MC_Set_Value_From_String(srID, MEDIA_IMPLEMENTATION_CLASS_UID,
"2.16.840.1.113669.2.931128");

MC_Set_Value_From_String(srID, MEDIA_IMPLEMENTATION_VER_NAME,
"MergeCOM3_1.0");

MC_Set_Value_From_String(srID, MEDIA_STORAGE_SOP_CLASS_UID,
"1.2.840.10008.5.1.4.1.1.88.59");

MC_Set_Value_From_String(srID, MEDIA_STORAGE_SOP_INSTANCE_UID,
"1.2.3.4.5.6.7.300");

/* Set other required attributes for the KO IOD */

MC_Set_Value_From_String(srID, MC_ATT_SOP_CLASS_UID,
"1.2.840.10008.5.1.4.1.1.88.59");

MC_Set_Value_From_String(srID, MC_ATT_SOP_INSTANCE_UID,
"1.2.3.4.5.6.7.300");

MC_Set_Value_From_String(srID, MC_ATT_STUDY_DATE, "19991029");

MC_Set_Value_From_String(srID, MC_ATT_CONTENT_DATE, "19991029");

MC_Set_Value_From_String(srID, MC_ATT_STUDY_TIME, "154500");

MC_Set_Value_From_String(srID, MC_ATT_CONTENT_TIME, "154510");

MC_Set_Value_From_String(srID, MC_ATT_ACCESSION_NUMBER, "123456");

MC_Set_Value_From_String(srID, MC_ATT_MODALITY, "KO");

MC_Set_Value_From_String(srID, MC_ATT_MANUFACTURER, "MERGE");

MC_Set_Value_From_String(srID, MC_ATT_REFERRING_PHYSICIANS_NAME,
"Luke^Will^^Dr.^M.D.");

MC_Set_Value_To_NULL(srID, MC_ATT_REFERENCED_PERFORMED_PROCEDURE_-
STEP_SEQUENCE);

MC_Set_Value_From_String(srID, MC_ATT_PATIENTS_NAME, "Jane^Doo");

MC_Set_Value_From_String(srID, MC_ATT_PATIENT_ID, "234567");

MC_Set_Value_From_String(srID, MC_ATT_PATIENTS_BIRTH_DATE, "19991109"
);

MC_Set_Value_From_String(srID, MC_ATT_PATIENTS_SEX, "F");

MC_Set_Value_From_String(srID, MC_ATT_STUDY_INSTANCE_UID,
"1.2.3.4.5.6.7.100");

MC_Set_Value_From_String(srID, MC_ATT_SERIES_INSTANCE_UID,
"1.2.3.4.5.6.7.200");

MC_Set_Value_From_String(srID, MC_ATT_STUDY_ID, "345678");

MC_Set_Value_From_String(srID, MC_ATT_SERIES_NUMBER, "1");

MC_Set_Value_From_String(srID, MC_ATT_INSTANCE_NUMBER, "1");

MC_Set_Value_To_NULL(srID, MC_ATT_PERFORMED_PROCEDURE_CODE_SEQUENCE);

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

133© Copyright Merge Healthcare Solutions Inc. 2023

MC_Open_Item(&item1, "HIERARCHICAL_SOP_INST_REF_MACRO");

MC_Set_Value_From_String(item1, MC_ATT_STUDY_INSTANCE_UID,
"1.2.3.4.5.6.7.100");

MC_Open_Item(&item2, "HIERARCHICAL_SERIES_REF_MACRO");

MC_Set_Value_From_String(item2, MC_ATT_SERIES_INSTANCE_UID,
"1.2.3.4.5.6.7.200");

MC_Open_Item(&item3, "REF_SOP");

/* following UIDs are the same as used in the Row 8 item */

MC_Set_Value_From_String(item3, MC_ATT_REFERENCED_SOP_CLASS_UID,
"1.2.3.4.1");

MC_Set_Value_From_String(item3, MC_ATT_REFERENCED_SOP_INSTANCE_UID,
"1.2.3.4.5.1");

MC_Set_Value_From_Int(item2, MC_ATT_REFERENCED_SOP_SEQUENCE, item3);

MC_Set_Value_From_Int(item1, MC_ATT_REFERENCED_SERIES_SEQUENCE,
item2);

MC_Set_Value_From_Int(srID, MC_ATT_CURRENT_REQUESTED_PROCEDURE_EVI-
DENCE_SEQUENCE, item1);

/* Convert message to file */

MC_Message_To_File(srID, fileName);

4.17.10. Reading SR Documents

Reading SR Documents is done in a similar way as encoding, but in reverse sequence:

● Read a File or receive a message object.

● Read root level attributes.

● Convert message object into SR object.

● Traverse SR content tree and extract Content Node attributes,

The following code demonstrates a reading sequence for the Key Object Document generated
above.

MC_STATUS status;

int srID, childID, tempId;

SR_CONTENT_TYPE nodeType;

char conceptNameValue[512];

char conceptNameScheme[512];

char conceptNameMeaning[512];

SR_RELATIONSHIP relationship;

int isLast;

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

134© Copyright Merge Healthcare Solutions Inc. 2023

char sopClassUid[512];

char sopInstanceUid[512];

int refFramesCount;

/* convert file->message->SR objects */

status = MC_File_To_Message(srID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_File_To_Message Eror code %d", status);

 return;

}

/*

* Here you can read root level attributes from the message

*/

status = MC_Message_To_SR(srID);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_Message_To_SR Eror code %d", status);

 return;

}

/* Get a concept name from the first CONTAINER node */

status = MC_SRH_Get_Concept_Name(srID,

 conceptNameValue, sizeof(conceptNam-
eValue),

 conceptNameScheme, sizeof(conceptNa-
meScheme),

 conceptNameMeaning, sizeof(concept-
NameMeaning));

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_SRH_Get_Concept_Name Eror code %d", status);

 return;

}

printf("Document Title: %s\n", conceptNameMeaning);

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

135© Copyright Merge Healthcare Solutions Inc. 2023

/* Reading information about the first child node.

* The following code assumes the Cntent Items type and their
sequence.

* To make it more generic you would need to create a recursive loop
and

* process each child based on the returned Content Item node type.

*/

status = MC_SRH_Get_First_Child(srID, &childID, &relationship, &node-
Type, &isLast);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_SRH_Get_First_Child Eror code %d", status);

 return;

}

/* First child expected to be the CODE item */

if(nodeType == SR_NODE_CODE)

{

 /* Print concept code + code value */

 status = MC_SRH_Get_Concept_Name(childID,

 conceptNameValue, sizeof(concept-
NameValue),

 conceptNameScheme, sizeof(concept-
NameScheme),

conceptNameMeaning, sizeof(con-
ceptNameMeaning));

 if(status != MC_NORMAL_COMPLETION)

 {

 printf("MC_SRH_Get_Concept_Name Eror code %d", status);

 return;

 }

 printf("%s: ", conceptNameMeaning);

 status = MC_SRH_Get_CODE_Data(childID,

 conceptNameValue, sizeof(conceptNam-
eValue),

 conceptNameScheme, sizeof(conceptNa-
meScheme),

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

136© Copyright Merge Healthcare Solutions Inc. 2023

 conceptNameMeaning, sizeof(concept-
NameMeaning));

 if(status != MC_NORMAL_COMPLETION)

 {

 printf("MC_SRH_Get_CODE_Data Eror code %d", status);

 return;

 }

 printf("%s\n", conceptNameMeaning);

}

/* Reading information about the next child node. */

status = MC_SRH_Get_Next_Child(srID, &childID, &relationship, &node-
Type, &isLast);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_SRH_Get_Next_Child Eror code %d", status);

 return;

}

/* Second child expected to be the TEXT item */

if(nodeType == SR_NODE_TEXT)

{

 /* Print concept code + text value */

 status = MC_SRH_Get_Concept_Name(childID,

 conceptNameValue, sizeof(concept-
NameValue),

 conceptNameScheme, sizeof(concept-
NameScheme),

conceptNameMeaning, sizeof(con-
ceptNameMeaning));

 if(status != MC_NORMAL_COMPLETION)

 {

 printf("MC_SRH_Get_Concept_Name Eror code %d", status);
return;

 }

 printf("%s: ", conceptNameMeaning);

 status = MC_SRH_Get_TEXT_Data(childID, strBuffer, sizeof(strBuf-
fer));

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

137© Copyright Merge Healthcare Solutions Inc. 2023

 if(status != MC_NORMAL_COMPLETION)

 {

 printf("MC_SRH_Get_TEXT_Data Eror code %d", status);

 return;

 }

 printf("%s\n", strBuffer);

}

/* Reading information about the next child node. */

status = MC_SRH_Get_Next_Child(srID, &childID, &relationship, &node-
Type, &isLast);

if(status != MC_NORMAL_COMPLETION)

{

 printf("MC_SRH_Get_Next_Child Eror code %d", status);

 return;

}

/* Next child expected to be the IMAGE item */

if(nodeType == SR_NODE_IMAGE)

{

 status = MC_SRH_Get_IMAGE_Data(childID,

sopClassUid, sizeof(sopClassUid),

sopInstanceUid, sizeof(sopInstan-
ceUid),

&refFramesCount);

 if(status != MC_NORMAL_COMPLETION)

 {

 printf("MC_SRH_Get_IMAGE_Data Eror code %d", status);

 return;

 }

 printf("Image SOP Class: %s, Image SOP Instance: %s\n", sopClas-
sUid, sopInstanceUid);

}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

138© Copyright Merge Healthcare Solutions Inc. 2023

4.18. Unicode Support
Check Platform Notes for Unicode support

Merge DICOM Toolkit supports DICOM character sets to Unicode conversion using a public
domain library - ICU4C. The Unicode conversion libraries are optional and users that are not plan-
ning to use Unicode conversion don't need to deploy the extra two shared objects included in the
distribution package.

The original copyright notice of the ICU4C software is below:

ICU License - ICU 1.8.1 and later

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2012 International Business Machines Corporation and others

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, pro-
vided that the above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice appear in sup-
porting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE
BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES,
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFT-
WARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertis-
ing or otherwise to promote the sale, use or other dealings in this Software without prior written
authorization of the copyright holder.

APIs to perform Unicode conversion are listed below:

● MC_Enable_Unicode_Conversion()

● MC_Byte_To_Unicode()

● MC_Unicode_To_Byte()

● MC_Get_Value_To_UnicodeString()

● MC_Get_Next_Value_To_UnicodeString()

● MC_Set_Value_From_UnicodeString()

● MC_Set_Next_Value_From_UnicodeString()

● MC_Get_pValue_To_UnicodeString()

● MC_Get_Next_pValue_To_UnicodeString()

● MC_Set_pValue_From_UnicodeString()

● MC_Set_Next_pValue_From_UnicodeString()

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

139© Copyright Merge Healthcare Solutions Inc. 2023

A new type MC_UChar is introduced to represent a Unicode character storage unit. This storage
unit, inherited from the ICU4C library, is implicitly defined as “unsigned short” on all supported
platforms. This unit of storage sufficiently covers the ranges of all DICOM specified character sets. A
Unicode string is treated as an array of MC_UChar with terminator (U+0000).

To use the Unicode conversion functions, MC_Enable_Unicode_Conversion() must be called
first with a non-zero argument to initialize the conversion library. This involves loading the two sup-
plied shared objects (ICU4C) in the distribution (refer to Platform Notes). The loading process also
involves loading the dependency files of the ICU4C libraries. Users must ensure all dependency
files are accessible at runtime.

All conversion functions require an output buffer and its size to be passed down as arguments. This
means that the user must pre-allocate a big enough buffer with sufficient space to receive the out-
put. If insufficient output space is detected, the functions will return MC_BUFFER_TOO_SMALL.

As a rule of thumb, when converting from Unicode to a DICOM character set, create a buffer size
equals to the number of Unicode characters times 16. The overestimation is to ensure that any
escape sequence and terminator byte (NULL) can be accommodated. When converting from
DICOM character set to Unicode, create a buffer size equals to ((number of input bytes + 1) *
sizeof(MC_Uchar)). The assumption is that the DICOM character set can only produce one 16-bit
Unicode character per input byte and one extra terminator byte (U+0000) at the end of the string.

There are two utility functions, MC_Byte_To_Unicode() and MC_Unicode_To_Byte() that con-
vert DICOM character set to Unicode and back respectively. These two functions perform conver-
sion without requiring any message handle.

There are four functions, MC_Get_Value_To_UnicodeString(), MC_Get_Next_Val-
ue_To_UnicodeString(), MC_Set_Value_From_UnicodeString() and MC_Set_Next_Val-
ue_From_UnicodeString() dealing with getting and setting an attribute value with Unicode
character string. The operations are similar to the regular MC_Get_(Next_)Value_To_String()
and MC_Set_(Next_)Value_From_String() counterparts.

There are no equivalent functions to get/set private attribute with Unicode strings. To work around,
the user can call MC_Unicode_To_Byte() and then MC_Set_pValue...() to set an attribute
value or MC_Get_pValue...() and then MC_Byte_To_Unicode() to get an attribute value.

Finally, if the user prefers unloading the Unicode conversion library, calling MC_Enable_Uni-
code_Conversion() with zero as argument will unload the ICU4C libraries. Note that if the user
calls MC_Release_Library(), the ICU4C library will NOT be unloaded automatically.

Below is an example usage of the utility functions:

/*

* Example of converting Unicode to Japanese character sets

*/

MC_STATUS status;

char *charsets[3];

MC_UChar *uChars = input; /* input is defined externally as a Unicode
string */

int numUnicodeChars = -1; /* set to -1 only if Unicode string is
U+0000 terminated,

 or set to exact number of Unicode charac-
ters */

int outputBufferSize;

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

140© Copyright Merge Healthcare Solutions Inc. 2023

char bytes; /* output */

int outLen; /* to receive the exact number of bytes produced (exclud-
ing terminator) */

/* enable Unicode conversion library FIRST, only need to do once in
your application */

status = MC_Enable_Unicode_Conversion(1);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to initialize Unicode library\n");

 return status;

}

/* equivalent to DICOM attribute (0008,0005) but in array form */

charsets[0] = "ISO 2022 IR 13";

charsets[1] = "ISO 2022 IR 87";

charsets[2] = "ISO 2022 IR 159";

/* sufficient buffer to hold output, each Unicode

 character will not produce more than 16 bytes */

outputBufferSize = numUnicodeChars * 16;

bytes = malloc(outputBufferSize);

/* convert from Unicode to DICOM character set */

status = MC_Unicode_To_Byte(charsets, 3, (const MC_UChar *)uChars,

numUnicodeChars, outputBufferSize, &outLen, bytes);

if(status == MC_BUFFER_TOO_SMALL)

{

 printf("fail because buffer too small, increase output buffer
size\n");

 return status;}

}

else if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to convert\n");

 return status;}

}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

141© Copyright Merge Healthcare Solutions Inc. 2023

/*

* Example of converting Korean character set to Unicode

*/

MC_STATUS status;

char *firstCharset = ""; /* Korean dataset (0008,0005) is "\ISO 2022
IR 149",

 always take the first charset which is "" */

char bytes = input; /* input is defined externally

 (raw byte array, may contain escape
sequence) */

int numberOfBytes = -1; /* set to -1 if input is NULL terminated,

 or set to exact number of input bytes */

MC_UChar *uChars; /* output */

int outputBufferSize;

int outLen; /* to receive the exact number of Unicode

 characters produced (excluding terminator)
*/

/* enable Unicode conversion library FIRST, only need to do once in
your application */

status = MC_Enable_Unicode_Conversion(1);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to initialize Unicode library\n");

 return status;}

}

/* sufficient buffer to hold output, each input byte can produce one
MC_UChar */

 outputBufferSize = (numberOfBytes + 1) * sizeof(MC_UChar); /* add 1
for terminator U+0000 */

uChars = malloc(outputBufferSize);

/* convert from DICOM character set to Unicode */

status = MC_Byte_To_Unicode(firstCharset, bytes, numberOfBytes, out-
putBufferSize, &outLen, uChars);

if(status == MC_BUFFER_TOO_SMALL)

{

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

142© Copyright Merge Healthcare Solutions Inc. 2023

 printf("fail because buffer too small, increase output buffer
size\n");

 return status;}

}

else if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to convert\n");

 return status;}

}

Below is an example usage of the Set and Get functions:

/*

* Example of MC_Set_Value_From_UnicodeString

*/

int msgID; /* assigned elsewhere when message was created */

MC_UChar *inputStr; /* assigned elsewhere as the input Unicode source
*/

int inputLen = -1; /* if input is U+0000 terminated,

 or set to exact number of Unicode characters */

/* enable Unicode conversion library FIRST, only need to do once in
your application */

status = MC_Enable_Unicode_Conversion(1);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to initialize Unicode library\n");

 return status;

}

status = MC_Set_Value_From_UnicodeString(msgID, MC_ATT_PATIENT_NAME,
inputLen, inputStr);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to set str\n");

 return status;

}

/*

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

143© Copyright Merge Healthcare Solutions Inc. 2023

* Example of MC_Get_Value_To_UnicodeString

*/

int msgID; /* assigned elsewhere when message was created */ int
rawLen;

MC_UChar *outputStr;

MC_size_t outputBufferSize;

int outLen; /* actual number of Unicode characters produced

(excluding U+0000 terminator) */

/* enable Unicode conversion library FIRST, only need to do once in
your application */

status = MC_Enable_Unicode_Conversion(1);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to initialize Unicode library\n");

 return status;

}

/* get raw attribute length */

status = MC_Get_Value_Length(msgID, MC_ATT_PATIENT_NAME, 1, &rawLen);

if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to get length\n");

 return status;

}

/* allocate sufficent output buffer */

outputBufferSize = (rawLen + 1) * sizeof(MC_UChar); /* add 1 for the
U+0000 terminator */

outputStr = malloc(outputBufferSize);

status = MC_Get_Value_To_UnicodeString(msgID, MC_ATT_PATIENT_NAME,
outputBufferSize, &outLen, outputStr);

if(status == MC_BUFFER_TOO_SMALL)

{

 printf("fail because buffer too small, increase output buffer
size\n");

 return status;

}

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

144© Copyright Merge Healthcare Solutions Inc. 2023

else if(status != MC_NORMAL_COMPLETION)

{

 printf("failed to get str\n");

 return status;

}

145© Copyright Merge Healthcare Solutions Inc. 2023

Chapter 5. Deploying Applications

There are several issues to consider when deploying a Merge DICOM Toolkit based application.
These include deciding which Merge DICOM Toolkit files are needed for your application, how to set
important configuration options to reduce problems in the field, and how to deal with potential UN
VR problems. The following sections describe these issues in further detail.

5.1. Merge DICOM Toolkit Required Files
There are a limited number of files required by Merge DICOM Toolkit applications. These files are
described in the table below. Note that the use of some of these files can be avoided by using the
genconf and gendict utilities. Each of these utilities generates a source file from the configuration
files that can then be compiled and linked into your application.

Table 5.1: Files needed when deploying an application

5.2. Configuration Options
The majority of Merge DICOM Toolkit's configuration options can be used to solve interoperability
problems in the field. There are some options, however, that can be set before deploying a Merge
DICOM Toolkit application to help reduce potential problems. These options are listed in the table
below with descriptions of how they can be set.

File Description and Use

merge.ini Merge DICOM Toolkit initialization file. This file contains logging information and path
names for the other configuration files. Use of this file can be avoided by using the
genconf utility to link the file into the Merge DICOM Toolkit application.

mergecom.pro Merge DICOM Toolkit system profile. This file contains general run-time configuration
options. Use of this file can be avoided by using the genconf utility to link it into the
Merge DICOM Toolkit application.

mergecom.app Merge DICOM Toolkit application profile. This file contains configuration information
about the services supported by the Merge DICOM Toolkit application and informa-
tion about remote DICOM applications. Use of this file can be avoided by using the
genconf utility to link it into the Merge DICOM Toolkit application.

mergecom.srv Merge DICOM Toolkit services file. This file contains information about the services
supported by Merge DICOM Toolkit. Use of this file can be avoided by using the gen-
conf utility to link it into the Merge DICOM Toolkit application.

mrgcom3.msg Merge DICOM Toolkit message information file. This file contains validation informa-
tion for DICOM messages. This file is required if the MC_Open_Message(), MC_Cre-
ate_File(), MC_Validate_Message(), MC_Validate_File() or
MC_Validate_Attribute() functions are called from the Merge DICOM Toolkit
application.

mrgcom3.dct Merge DICOM Toolkit data dictionary file. This file contains information about all of
the DICOM attributes. Use of this file can be avoided by using the gendict utility to
link it into the Merge DICOM Toolkit application.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

146© Copyright Merge Healthcare Solutions Inc. 2023

Table 5.2: Configuration options to consider when deploying an application

5.2.1. Configuring Remote Nodes for SCU Applications

Configuring remote nodes at run-time

Typical Merge DICOM Toolkit SCU applications use the mergecom.app configuration file to config-
ure SCP applications that it communicates with. Using this configuration file requires that remote
applications be configured before the library is initialized. It may be desirable to configure remote
nodes at run-time. The following example illustrates how MC_Open_Association() can be used to
specify remote node information:

MC_STATUS mcStatus;

int applicationID;

int associationID;

Configuration Option Description

ACCEPT_ANY_APPLICATION_TITLE When set to NO, Merge DICOM Toolkit requires that the Application
Entity title sent in an association request match one of the regis-
tered application titles for the SCP. When there is no match, the
association will be automatically rejected. Setting this option to YES
will eliminate some association negotiation problems in the field for
SCP applications.

ACCEPT_ANY_HOSTNAME When set to NO, Merge DICOM Toolkit will attempt to resolve the IP
address of the SCU application into a hostname. If this resolution
cannot be done, the association will automatically be rejected. Set-
ting this option to YES will reduce configuration problems in the
field for SCP applications.

EXPORT_UN_VR_TO_MEDIA Setting this option to NO will cause UN VR attributes to not be
exported when writing DICOM Part 10 format files with MC_Write_-
File() or MC_Write_File_By_Callback(). See the following
sections for a further discussion of UN VR.

EXPORT_UN_VR_TO_NETWORK Setting this option to NO will cause UN VR attributes to not be
exported over the network with MC_Send_Request_Message().
See the following sections for a further discussion of UN VR.

IMPLEMENTATION_CLASS_UID The Implementation Class UID is used to uniquely identify a specific
class of implementation. PS3.7 of DICOM states: "(The Implemen-
tation Class UID) is intended to provide respective (each network
node knows the other's implementation identity) and non-ambigu-
ous identification in the event of communication problems encoun-
tered between two nodes." PS3.7 of DICOM further defines how this
UID should be defined: "different equipment of the same type or
product line (but having different serial numbers) shall use the
same Implementation Class UID if they share the same implemen-
tation environment (that is, software)."

IMPLEMENTATION_VERSION The Implementation Version is intended to distinguish between
software versions of an implementation. It should be set to the ver-
sion of the Merge DICOM Toolkit application.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

147© Copyright Merge Healthcare Solutions Inc. 2023

char remoteAE[64+2];

char remoteHostname[100];

char serviceList[100];

int remotePort;

strcpy(remoteAE, "MERGE_STORE_SCP");

strcpy(remoteHostname, "myhost.merge.com");

strcpy(serviceList, "Storage_Service_List");

remotePort = 104;

mcStatus = MC_Open_Association(applicationID,

 &associationID,

 remoteAE,

 &remotePort,

 remoteHostname,

 serviceList);

Note that the service list used to negotiate with the remote node must be pre configured. It is
assumed that the services supported by an SCU application are predetermined.

5.3. UN VR
UN VR interoperability problems

DICOM Supplement 14, Unknown Value Representation, became a part of the DICOM standard on
June 3, 1997. This supplement adds a new value representation, UN, to the DICOM standard. It was
developed to fix two related holes in the DICOM standard:

When standard or private attributes were received in an implicit value representation (VR) transfer
syntax, and the user does not have a knowledge of the VR of the attributes, there is no way to repre-
sent the VR for these attributes in an explicit VR transfer syntax.

Every time a new VR is added to the standard, there is no way to determine if the length field in
explicit value representation transfer syntaxes should be encoded as 2 bytes or 4 bytes, so a general
parser could not be properly written to handle future VRs.

The need for this supplement is mainly for use in “archive” systems. An “archive” will typically want
to preserve the private attributes contained within a message for later use. There also may be a
need to add support for new image objects with new VRs to an “archive” system without having to
change the software.

Unfortunately, the method that Supplement 14 specifies for encoding UN value representation attri-
butes is typically not compatible with older DICOM implementations. Versions previous to 2.2.2 of
the Merge DICOM Toolkit do not parse these attributes properly. The MC_Read_Message() func-
tion call will fail and the association will be aborted if a UN VR attribute is received. This has obvi-
ously caused a variety of interoperability problems in the field.

The typical DICOM scenario where UN VR can cause a DICOM communication failure is the follow-
ing: a modality exports a series of images to a PACS or “archive” system via the DICOM storage ser-

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

148© Copyright Merge Healthcare Solutions Inc. 2023

vice class. The images were encoded in the implicit VR little endian transfer syntax and contain
multiple private attributes. Later, a DICOM workstation decides to retrieve the images from the
“archive” or PACS system. The workstation does not yet support UN VR, however, the PACS or
“archive” system does. The workstation uses the DICOM query/retrieve service class to retrieve the
series of images. When the images are exported to the workstation with an explicit VR transfer syn-
tax, the workstation fails to parse the first image received when it encounters the first UN VR attri-
bute, and the association is automatically aborted by the workstation.

We have added several methods to solve this interoperability problem through the Merge DICOM
Toolkit's configuration files.

For SCU systems that are exporting UN VR tags to systems that cannot handle them, the following
can be done:

1. Configure the SCU to only use the Implicit VR Little Endian transfer syntax when exporting
objects. This can be done through the use of transfer syntax lists within the mergecom.app file
or through commenting out the UID definitions for the other transfer syntaxes within the
mergecom.pro file.

2. Set the UNKNOWN_VR_CODE configuration option in the mergecom.pro file to 'OB'. This forces
unknown VR attributes to be encoded as OB instead of as UN. All implementations can handle
OB encoding. There are several drawbacks to this option. If the attributes are encoded as OB, it
is harder for these attributes to be converted back to their normal VR. Secondly, this option
changes all instances of the UN VR into OB. Systems that can handle the UN VR will now also
receive these attributes as OB.

3. Set the EXPORT_UN_VR_TO_NETWORK configuration option to 'No'. This will cause the Merge
DICOM Toolkit to not export attributes encoded as UN VR to the network. This option was
added to release 2.3.0 of the Merge DICOM Toolkit.

For SCP systems receiving UN VR tags that they cannot handle, the following can be done:

1. Configure the SCP to only negotiate the Implicit VR Little Endian transfer syntax when receiving
objects.

With the help of these options, most UN VR problems in the field can be fixed simply by changing
configuration values within the Merge DICOM Toolkit.

149© Copyright Merge Healthcare Solutions Inc. 2023

Appendix A. Frequently Asked Questions

This appendix lists some frequently asked questions by Merge DICOM Toolkit users.

1. I recently received a new version of Merge DICOM Toolkit and wonder what is required for me to
upgrade to the new version?

There are several areas where changes typically occur between releases of the Merge DICOM
Toolkit. The following are specific areas to look at when upgrading to a new version:

● Upgrade the header files — The mc3msg.h, mergecom.h, mc3media.h, and mcstatus.h
files typically change with each release. These files must be updated when moving to a new
Merge DICOM Toolkit software release. There are several structures defined in these files
which have been updated in the past to support new functionality. Not updating these files
can cause problems with the library.

● Upgrading the library — The Merge DICOM Toolkit library itself must be updated. It is rec-
ommended that your application be recompiled against the new version of the library
instead of just replacing the library.

● Upgrading the data dictionary files — The diction.h, mergecom.srv, mrgcom3.msg, and
mrgcom3.dct files must all be updated when upgrading the Merge DICOM Toolkit data dic-
tionary. Upgrading some, but not all of these files can cause subsequent problems.

● Upgrading the configuration files — Upgrading the merge.ini, mergecom.pro, and
mergecom.app configuration files is optional. Although new configuration options are often
added to these files, Merge DICOM Toolkit will assume default values for these options if
they are not included in a configuration file. These files do not have to be updated when
moving to a new release. Note however that the descriptions of configuration options are
often updated and it is useful to have the latest versions of these files.

2. I am running the toolkit's sample applications for the first time. I have set the MERGE_INI envi-
ronment variable to point to the merge.ini file. However, the MC_Library_Initialization call is still
returning MC_CONFIG_INFO_ERROR. What is the cause of this problem?

This is usually only a problem under Windows. The merge.ini file contains several entries that
point to the locations of the other toolkit configuration files. These entries contain relative path-
names for the other files. If the sample applications are not executed from the directory where
the configuration files are located, the toolkit will be unable to find the files and produce this
error. Changing these paths to absolute paths will fix the problem.

3. It is inconvenient to set absolute paths for the various configuration options in the merge.ini and
mergecom.pro files that need them. Is there a way to make these pathnames be configurable at
run-time?

Merge DICOM Toolkit allows the placement of environment variables in these pathnames. This
allows setting of a root directory for these pathnames. The following is an example of how this
functionality is used in our configuration files:

● MERGECOM_PRO = $(MERGE_ROOT)\mc3apps\mergecom.pro

● In this example, MERGE_ROOT would be an environment variable set in a similar fashion as
the MERGE_INI environment variable.

● A special macro "MC3INIDIR" is used to represent the directory where "merge.ini" is. It is
used like the environment variable with the difference that it is automatically resolved and
does not need to be set.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

150© Copyright Merge Healthcare Solutions Inc. 2023

● If MERGECOM_3_PROFILE, MERGECOM_3_SERVICES or MERGECOM_3_APPLICA-
TIONS contain relative paths with a prefix "$(MC3INIDIR)" or "%MC3INIDIR%", the toolkit
considers the path relative to the location of the "merge.ini" file.

For example:

MERGECOM_3_PROFILE = $(MC3INIDIR)../config/mergecom.pro

The path of the profile file is "../config/mergecom.pro" relative to the location of the "merge.ini"
file.

4. I am testing the sample applications for the first time and cannot get the client (SCU) applica-
tion to connect to the server (SCP) for any of the sample applications. The MC_Open_Associa-
tion function is returning MC_SYSTEM_ERROR. It appears as though the connection is
opening, but it is quickly dropped. Why is this happening?

As a security measure, the MC_Wait_For_Association() function used in SCPs attempts to
determine the hostname of SCUs connecting to it. If it cannot determine the remote hostname,
it will drop the connection. The MC_Wait_For_Association() function uses the local sys-
tem's hosts file or its configured domain name server to translate the SCU's IP address into its
hostname. By configuring the SCU's hostname in your local hosts file, this problem will be elim-
inated. Also, the ACCEPT_ANY_HOSTNAME configuration value in the mergecom.pro file disables
this checking.

5. What can be done to reduce the memory requirements of the Merge DICOM Toolkit?

There are several methods for reducing the memory requirements of Merge DICOM Toolkit.
The first method is to use either the MC_Open_Empty_Message() or MC_Create_Empty_-
File() functions when creating message and file objects. These functions reduce memory by
not reading in all of the information needed for validation of messages and files respectively.
These functions will also improve performance.

There are several configuration values that reduce Merge DICOM Toolkit's memory require-
ments. The following describes each of these options:

● FORCE_OPEN_EMPTY_ITEM — This configuration option performs the same function as
using MC_Open_Empty_Message(), except that it is for items. It is especially useful for
reducing the amount of memory used when working with large DICOMDIRs.

● LARGE_DATA_STORE and LARGE_DATA_SIZE — These options control the ability of Merge
DICOM Toolkit to store pixel data in temporary files instead of RAM. This functionality is
enabled by setting LARGE_DATA_STORE to FILE, and adjusting LARGE_DATA_SIZE to the
size of data element that you want spooled to temporary file. Note that this will decrease
performance.

● DICOMDIR_STREAM_STORAGE — This option can be used when reading DICOMDIR files to
reduce the amount of memory required to store directory records within the DICOMDIR.

6. What can be done to increase the performance of the Merge DICOM Toolkit?

There are several Merge DICOM Toolkit configuration values that impact performance in differ-
ent ways. The following is a summary of these options:

● ELIMINATE_ITEM_REFERENCES — This option improves the performance of the MC_Emp-
ty_Message(), MC_Free_Message(), MC_Empty_File(), MC_Free_File() and MC_-
Free_Item() functions. This option will disable functionality within the toolkit that causes
the toolkit to search all currently open message objects for references to an item that is
being freed by one of these calls. This call is especially useful when your application uses
very large DICOMDIR files.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

151© Copyright Merge Healthcare Solutions Inc. 2023

● PDU_MAXIMUM_LENGTH — This option sets the maximum sized PDU that the toolkit will
receive. If during association negotiation the maximum sized PDU of the system negotiating
with the toolkit application is larger than this value, the PDU size will be limited to this value.

Setting this option so that a PDU fits within an even multiple of the default TCP/IP Maximum
Segment Size (MSS) of 1460 bytes will increase performance. Note that 6 bytes for the PDU
header must be added to the configured maximum PDU size when calculating a multiple of the
MSS. Having the PDU Maximum length an even multiple of the MSS ensures that there are lim-
ited delays within TCP/IP stack when transferring. With the exception of the final TCP/IP packet
for a message, all packets transferred should exactly fit within a TCP/IP packet.

● WORK_BUFFER_SIZE — This option specifies how the toolkit buffers data before storing it or
passing it to a user's callback function. Setting higher values for this option will increase
performance.

● TCPIP_RECEIVE_BUFFER_SIZE — This option sets the TCP/IP receive buffer size. Higher
values for this buffer generally will increase the network performance of the toolkit for
server (SCP) applications. This value should also be slightly larger than the PDU_MAXI-
MUM_LENGTH to increase performance. Setting this value to an even multiple of the MSS
(1460 bytes) will help increase performance on most platforms.

● TCPIP_SEND_BUFFER_SIZE — This option sets the TCP/IP send buffer size. Higher values
for this buffer generally will increase the network performance of the toolkit for client (SCU)
applications. This value should also be slightly larger than the PDU_MAXIMUM_LENGTH to
increase performance. Setting this value to an even multiple of the MSS (1460 bytes) will
help increase performance on most platforms.

● EXPORT_UNDEFINED_LENGTH_SQ — This option determines how Merge DICOM Toolkit
encodes sequences within all non-DICOMDIR messages and files. When set to Yes, the
sequences are encoded as undefined length. This eliminates the need for Merge DICOM
Toolkit to determine the length of sequences and increases performance.

● EXPORT_GROUP_LENGTHS_TO_NETWORK — This option determines if Merge DICOM Toolkit
encodes group length attributes when writing to the network (if they are included in the
message being sent). Setting this option to No increases Merge DICOM Toolkit network
performance. This eliminates the need for Merge DICOM Toolkit to determine the length of
groups when streaming to the network.

● EXPORT_GROUP_LENGTHS_TO_MEDIA — This option determines if Merge DICOM Toolkit
encodes group length attributes when writing to files. Setting this option to No increases
Merge DICOM Toolkit performance. This eliminates the need for Merge DICOM Toolkit to
determine the length of groups when writing to media.

● EXPORT_UNDEFINED_LENGTH_SQ_IN_DICOMDIR — This option determines how Merge
DICOM Toolkit exports sequence attributes in DICOMDIRs. When set to Yes, the sequences
in DICOMDIRs are encoded as undefined length. This greatly improves performance when
writing DICOMDIRs because Merge DICOM Toolkit no longer needs to calculate the length
of sequence attributes in DICOMDIRs.

7. Which of the options listed above have the greatest impact on network performance?

● The PDU_MAXIMUM_LENGTH, TCPIP_RECEIVE_BUFFER_SIZE and
TCPIP_SEND_BUFFER_SIZE configuration options have the greatest impact on network
performance. Setting these to higher values directly increases the network performance of
Merge DICOM Toolkit.

● EXPORT_UNDEFINED_LENGTH_SQ can have a large impact if many sequence attributes are
included in the message being transferred.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

152© Copyright Merge Healthcare Solutions Inc. 2023

8. I am sending 8-bit images with Merge DICOM Toolkit, however, after sending the data to
another system, the pixel data is byte swapped incorrectly. What is causing this problem?

The Merge DICOM Toolkit User’s Manual contains the section “8-bit Pixel Data” which
describes this problem. This is typically only a problem on Big Endian machines. To summarize
the problem, we expect 8-bit data to be byte swapped on big endian machines. We do not look
at the “bits allocated” and “bits stored” tags to determine that the pixel data itself is 8-bit data,
we always treat pixel data (7fe0,0010) as OW. The pixel data must be assigned as byte
swapped, or the function MC_Byte_Swap_OBOW() should be called after setting the pixel data.

9. I recently upgraded to a new release of the Merge DICOM Toolkit. Since this upgrade, I have
been having problems with the MC_Set_Value_...() functions returning MC_INVALID_TAG.
This code worked before the upgrade. What is causing these problems?

The Merge DICOM Toolkit data dictionary changes from release to release. In some cases, the
identification number for a particular message type changes. When upgrading, if you do not
change all of the data dictionary files, this error will occur. The following files should be
upgraded with each release:

● diction.h

● mergecom.srv

● mrgcom3.msg

● mrgcom3.dct

10. What are the differences between the MC_NULL_VALUE, MC_EMPTY_VALUE and MC_IN-
VALID_TAG return values of the MC_Get_Value_...() functions?

● The MC_NULL_VALUE return value is used to identify when an attribute within a DICOM
message has zero length. DICOM allows attributes that have a Value Type of 2 to be set to
zero length when their value is unknown. (An attribute can be set to zero length in Merge
DICOM Toolkit with MC_Set_Value_To_NULL().)

● The MC_EMPTY_VALUE and MC_INVALID_TAG return values both mean that a message
does not contain a value for the specified attribute. The use of these return values depends
on how the message, file, or item containing the attribute was created.

● When using the MC_Open_Message(), MC_Create_File() or MC_Open_Item() func-
tions to create an object, Merge DICOM Toolkit loads a list of all of the valid attributes for the
object. For these types of objects, the MC_Get_Value_()... functions will return
MC_EMPTY_VALUE when an attribute defined for the object does not have a value. They will
return MC_INVALID_TAG for attributes that are not defined for the object.

● When the object has been created using MC_Open_Empty_Message(), MC_Create_Emp-
ty_File() or MC_Read_Message(), Merge DICOM Toolkit will return MC_INVALID_TAG
for any attribute that does not have a value defined.

11. I am trying to assign the value to a DICOM attribute within a message, but Merge DICOM Toolkit
will not allow me to do this. When I call the MC_Set_Value_...() functions, they are returning
MC_INVALID_TAG. How can I add this attribute?

● This problem occurs when using MC_Open_Message() or MC_Create_File() to create a
message or file of a particular type. These functions restrict the attributes that can be added
to a message. Only those attributes that have been defined for the message type (and can
be found in our message.txt file) can be assigned to the message or file.

● When adding an attribute that has not been defined for a message, MC_Add_Stan-
dard_Attribute() can be called to add the tag to the definition of the message. Subse-
quent calls to the MC_Set_Value...() functions will then allow the user to assign the
attribute.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

153© Copyright Merge Healthcare Solutions Inc. 2023

12. How can I encode tags in a message that are invalidly encoded according to DICOM? When I
call the MC_Set_Value_From_String(),it does not return MC_NORMAL_COMPLETION.

The MC_Set_Value_From_String function's return values for invalid DICOM encoding are
actually warning return values, and not failures. When MC_INVALID_CHARS_IN_VALUE or MC_-
INVALID_VALUE_FOR_VR is returned, the value is still encoded. It is a common mistake in
Merge DICOM Toolkit applications to fail when MC_Set_Value_From_String() returns a
value other than MC_NORMAL_COMPLETION. If desired, the above return values can be ignored
and treated as normal completion.

154© Copyright Merge Healthcare Solutions Inc. 2023

Appendix B. Unique Identifiers (UIDs)

UIDs provide the capability to identify many different types of items. The purpose of UIDs is to guar-
antee the uniqueness of these types. DICOM uses UIDs to uniquely identify items such as SOP
classes, image instances and network negotiation parameters. Part 5, Section 9 along with Annexes
B and C of the DICOM Standard discusses how UIDs are composed, encoded and registered.

B.1. Summary of UID Composition
A UID is composed of a number of numeric values as defined by ISO 8824. The following is a typical
example of a UID:

1.2.840.10008.2.45.1.12345

A UID is composed of two parts: a <root> and a <suffix> and has the following form:

UID = <root>.<suffix>

where <root> is assigned by a registration authority (e.g., ANSI) with the distinguishing component
being the organization ID. The <root> portion of the UID uniquely identifies an organization while
the <suffix> portion is used to uniquely identify a specific object within the scope of the organiza-
tion. While the <root> component of the UID stays constant, the <suffix> portion will change in a
manner that will provide uniqueness for objects that need UIDs. Note: this implies that the organiza-
tion is responsible for maintaining the uniqueness of the <suffix>.

For example, using the UID above, <root> = 1.2.840.10008 and <suffix> =
2.45.1.12345. Where the organization ID portion of the <root> (10008) distinguishes organiza-
tions from each other.

NOTE: The above example is typical for UIDs obtained by ANSI during the time when the DICOM
standard was first released. The organization ID of 10008 has actually been assigned to
NEMA and is used as part of the <root> for DICOM standard UIDs such as SOP Classes,
Transfer Syntaxes, etc. For example, vendors creating images need to obtain their own orga-
nization ID and cannot use 10008.

For future UIDs, ISO has developed a joint relationship with CCITT and has changed the <root>
structure. Therefore, new UIDs from ANSI will no longer be of the form 1.2.840.xxxxx. but are cur-
rently assigned using the form, <root> = 2.16.840.1.10008, where, 10008 is the organization
ID.

B.2. Sample UID Format
There are many methods that can be used to ensure the uniqueness of a UID. The following is one
example encoding of a UID to ensure uniqueness:

<root>.<serial>.<process id>.<timestamp>.<count>

In this example, <root> is the assigned root UID for an organization. The <serial> component
would be a unique serial number assigned to the product within the organization. It may also be an
encoding of the MAC address assigned to an Ethernet card in the system. This field along with the
root gives a base for the UIDs that is unique for a specific device. The remaining components
ensure that the UID is unique within that device.

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

155© Copyright Merge Healthcare Solutions Inc. 2023

The <process id> field would be a process ID or thread ID for the process generating the UID. The
<timestamp> field would be a timestamp generated when the process or thread is created. Finally,
the <count> field would be a unique counter that is incremented for each UID created.

Some vendors also include fields within the UID to identify the type of UID. For example, the first
component after the root within the UID may be a “.1” for Study Instance UIDs, a “.2” for Series
Instance UIDs, and”.3” for SOP Instance UIDs. Occasionally a product identifier will also be
included within a UID. This may be a unique number assigned to a product within an organization.
Finally, a number may also be added to signify the software revision number for a product that is
generating the UID.

B.3. Obtaining a UID
The <root> portion of the UID should be registered by an organization that guarantees global
uniqueness. The American National Standards Institute (ANSI) is the registration authority for the
United States. Other national registration authorities exist for nations throughout the world such as
IBN in Belgium, AFNOR in France, BSI in Great Britain, DIN in Germany, and COSIRA in Canada.

B.3.1. Obtaining a UID from ANSI

ANSI is the registration authority for the US for organization names (that is, <root>) under the
global registration process established by the International Standards Organization (ISO) and the
International Telegraph and Telephone Consultative Committee (CCITT). ANSI's registration service
conforms with CCITT X.660 and ISO/IEC 9834-1. The ANSI organization name registration service
assigns one name component to the hierarchy defined by CCITT and ISO/IEC.

An organization seeking registration may do so by submitting a Request for Registration application
form along with a fee (as of August 1996 the fee is $1,000) to the Registration Coordinator. The
Request for Registration application form can be obtained from ANSI by use of the following infor-
mation:

American National Standards Institute
11 West 42nd Street
New York, New York 10036

TEL: 212.642.4900 FAX: 212.398.0023

156© Copyright Merge Healthcare Solutions Inc. 2023

Appendix C. XML and JSON Structures

The Merge DICOM Toolkit provides an API to convert a DICOM message, file or item into an XML or
JSON string.

The conversion to XML might be done based on Merge DICOM Model using MC_Mes-
sage_To_XML() API or using Native DICOM Model with MC_Message_To_XML_Native() API.
These functions are detailed in the Merge DICOM Toolkit Reference Manual.

The structure of the Merge DICOM XML string created from a DICOM message by the MC_Mes-
sage_To_XML() API looks like the following:

XML structure with the Base64 encoding of bulks and attributes with VR UN:

<?xml version="1.0" encoding="utf-8"?>

<DcmFile>

<FileMetaInfo Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ">

<Attribute Tag="00020001" VR="OB" Name="File Meta Information Ver-
sion" Length="2">AAE=</Attribute>

<Attribute Tag="00020002" VR="UI" Name="Media Storage SOP Class UID"
Length="25">...</Attribute>

<Attribute Tag="00020003" VR="UI" Name="Media Storage SOP Instance
UID" Length="29">...</Attribute>

<Attribute Tag="00020010" VR="UI" Name="Transfer Syntax UID"
Length="19">1.2.840.10008.1.2.1</Attribute>

...

<Attribute Tag="00020016" VR="AE" Name="Source Application Entity
Title" Length="15">MERGE_STORE_SCP</Attribute>

</FileMetaInfo>

<DataSet Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ" Trans-
ferSyntax="1.2.840.10008.1.2.1">

<Attribute Tag="00080008" VR="CS" Name="Image Type" Length="24">ORIG-
INAL\SECONDARY\OTHER</Attribute>

<Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

...

<Attribute Tag="00080020" VR="DA" Name="Study Date"
Length="8">20020717</Attribute>

<Attribute Tag="00080030" VR="TM" Name="Study Time"
Length="6">123429</Attribute>

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

157© Copyright Merge Healthcare Solutions Inc. 2023

<Attribute Tag="00080060" VR="CS" Name="Modality" Length="2">OT</
Attribute>

...

<Attribute Tag="00081111" VR="SQ" Name="Referenced Performed Proce-
dure Step Sequence" Length="1">

<Item>

<Attribute Tag="00081150" VR="UI" Name="Referenced SOP Class UID"
Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

<Attribute Tag="00081155" VR="UI" Name="Referenced SOP Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027.44</Attribute>

</Item>

</Attribute>

<Attribute Tag="00090010" VR="LO" Name="Private Creator Code"
PCode="PrivateCode" Length="11">SAMPLE PCODE</Attribute>

<Attribute Tag="00091010" VR="LO" Name="Private" PCode="SAMPLE PCODE"
Length="6">Value1</Attribute>

<Attribute Tag="00091015" VR="UN" Name="Private" PCode="SAMPLE PCODE"
Length="6">INAgNAEy</Attribute>

...

<Attribute Tag="00100010" VR="PN" Name="Patient's Name"
Length="28">Last^First</ Attribute>

...

<Attribute Tag="7FE00010" VR="OW" Name="Pixel Data" Encoding="Base64"
Length="262144">HQAABgMAAAIHBAM.</Attribute>

</DataSet>

</DcmFile>

XML structure with the default encoding of bulks and attributes with VR UN:

<?xml version="1.0" encoding="utf-8"?>

<DcmFile>

 <FileMetaInfo Service="STANDARD_SEC_CAPTURE" Com-
mand="C_STORE_RQ">

 <Attribute Tag="00020001" VR="OB" Name="File Meta Information
Version" Length="2">00 01</Attribute>

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

158© Copyright Merge Healthcare Solutions Inc. 2023

...

 <Attribute Tag="00020016" VR="AE" Name="Source Application
Entity Title" Length="15">MERGE_STORE_SCP</Attribute>

 </FileMetaInfo>

 <DataSet Service="STANDARD_SEC_CAPTURE" Command="C_STORE_RQ"
TransferSyntax="1.2.840.10008.1.2.1">

 <Attribute Tag="00080008" VR="CS" Name="Image Type"
Length="24">ORIGINAL\SECONDARY\OTHER</Attribute>

 <Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

...

 <Attribute Tag="00081111" VR="SQ" Name="Referenced Performed
Procedure Step Sequence" Length="1">

 <Item>

 <Attribute Tag="00081150" VR="UI" Name="Referenced SOP Class
UID" Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

 <Attribute Tag="00081155" VR="UI" Name="Referenced SOP
Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027.44</Attribute>

 </Item>

 </Attribute>

 <Attribute Tag="00090010" VR="LO" Name="Private Creator Code"
PCode="PrivateCode" Length="11">SAMPLE PCODE</Attribute>

 <Attribute Tag="00091010" VR="LO" Name="Private" PCode="SAMPLE
PCODE" Length="6">Value1</Attribute>

 <Attribute Tag="00091015" VR="UN" Name="Private" PCode="SAMPLE
PCODE" Length="6">20 20 20 20 20 30y</Attribute>

....

 <Attribute Tag="7FE00010" VR="OW" Name="Pixel Data" Encod-
ing="Base64" Length="262144">06 00 04 00 04 00 02 00 03.</Attribute>

 </DataSet>

</DcmFile>

The structure of the Native DICOM XML string created from a DICOM message by the MC_Mes-
sage_To_XML_Native() API looks like the following:

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

159© Copyright Merge Healthcare Solutions Inc. 2023

XML structure with the Base64 encoding of bulks and attributes with VR UN:

<?xml version="1.0" encoding="utf-8"?>

<NativeDicomModel

 xsi:schemaLocation="http://dicom.nema.org/PS3.19/models/NativeDI-
COM"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://dicom.nema.org/PS3.19/models/NativeDICOM">

 <DicomAttribute tag="00020001" vr="OB" keyword="FileMetaInforma-
tionVersion">

 <InlineBinary>AAE=</InlineBinary>

 </DicomAttribute>

 <DicomAttribute tag="00020010" vr="UI" keyword="TransferSyntax-
UID">

 <Value number="1">1.2.840.10008.1.2.1</Value>

 </DicomAttribute>

 <DicomAttribute tag="00080005" vr="CS" keyword="SpecificCharact-
erSet">

 <Value number="1">ISO 2022 IR 13</Value>

 <Value number="2">ISO 2022 IR 87</Value>

 </DicomAttribute>

 <DicomAttribute tag="00080008" vr="CS" keyword="ImageType">

 <Value number="1">ORIGINAL</Value>

 <Value number="2">DERIVED</Value>

 <Value number="3">CAPTURE</Value>

 </DicomAttribute>

 <DicomAttribute tag="00081050" vr="PN" keyword="PerformingPhysi-
cianName">

 <PersonName number="1">

 <Alphabetic>

 <FamilyName>Family</FamilyName>

 <GivenName>Given</GivenName>

 </Alphabetic>

 </PersonName>

 </DicomAttribute>

 <DicomAttribute tag="00081111" vr="SQ" keyword="ReferencedPer-
formedProcedureStepSequence">

 <Item number="1">

 <DicomAttribute tag="00081150" vr="UI" keyword="Refer-
encedSOPClassUID">

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

160© Copyright Merge Healthcare Solutions Inc. 2023

<Value number="1">1.2.840.10008.3.1.2.3.3</Value>

 </DicomAttribute>

 <DicomAttribute tag="00081155" vr="UI" keyword="Refer-
encedSOPInstanceUID">

<Value num-
ber="1">1.2.392.200036.9116.6.14.36309661475.20080417.153441.22178</
Value>

 </DicomAttribute>

 </Item>

 <DicomAttribute tag="0040A13A" vr="DT" keyword="ReferencedDa-
teTime">

 <Value number="1">20081212115553</Value>

 <Value number="2">20081212115559</Value>

 </DicomAttribute>

 <DicomAttribute tag="7FDF1040" vr="SQ" keyword="Private" private-
Creator="PRIVATE">

 <Item number="1">

 <DicomAttribute tag="00200011" vr="IS" keyword="SeriesNum-
ber">

<Value number="1">70</Value>

<Value number="2">82</Value>

 </DicomAttribute>

 <DicomAttribute tag="7FDF0010" vr="LO" keyword="Private
Creator Code" privateCreator="PRIVATE2">

<Value number="1">PRIVATE2</Value>

 </DicomAttribute>

 <DicomAttribute tag="7FDF1050" vr="ST" keyword="Private"
privateCreator="PRIVATE2">

<Value number="1">100</Value>

 </DicomAttribute>

 </Item>

 </DicomAttribute>

</NativeDicomModel>

The structure of the DICOM JSON string created from a DICOM message by the MC_Mes-
sage_To_Json() API looks like the following:

<?xml version="1.0" encoding="utf-8"?>

{

 "00020001": {

 "vr": "OB",

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

161© Copyright Merge Healthcare Solutions Inc. 2023

 "InlineBinary": "AAE="

 },

 "00020010": {

 "vr": "UI",

 "Value": [

 "1.2.840.10008.1.2.1"

]

 },

 "00080005": {

 "vr": "CS",

 "Value": [

 "ISO 2022 IR 13",

 "ISO 2022 IR 87"

]

 },

 "00080008": {

 "vr": "CS",

 "Value": [

 "ORIGINAL",

 "DERIVED",

 "CAPTURE"

]

 },

 "00081050": {

 "vr": "PN",

 "Value": [

 {

"Alphabetic": "Family^Given"

 }

]

 },

 "00081111": {

 "vr": "SQ",

 "Value": [

 {

"00081150": {

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

162© Copyright Merge Healthcare Solutions Inc. 2023

"vr": "UI",

"Value": [

"1.2.840.10008.3.1.2.3.3"

]

},

"00081155": {

"vr": "UI",

"Value": [

"1.2.392.200036.9116.6.14.36309661475.20080417.153441.22178"

]

}

 }

]

 },

 "0040A13A": {

 "vr": "DT",

 "Value": [

 "20081212115553",

 "20081212115559"

]

 },

 "7FDF1040": {

 "vr": "SQ",

 "Value": [

 "00200011": {

"vr": "IS",

"Value": [

70,

82

]

 },

 "7FDF0010": {

"vr": "LO",

"Value": [

"PRIVATE2"

]

Merge DICOM Toolkit 5.16.0 C/C++ User’s Manual

163© Copyright Merge Healthcare Solutions Inc. 2023

 }, "7FDF1050": {

"vr": "ST",

"Value": [

"100"

]

 }

]

 }

}

164© Copyright Merge Healthcare Solutions Inc. 2023

Appendix D. XML License

The Merge DICOM Toolkit supports DICOM to XML and XML to DICOM conversions through the
use of a public domain library: libxml2. Usage of the libxml2 library is governed by the MIT License
and Copyright notice. The original content of the MIT License and Copyright notice as shown below:

The MIT License (MIT)

Copyright (C) 1998-2012 Daniel Veillard. All Rights Reserved.

Copyright (C) 1998 Bjorn Reese and Daniel Stenberg.

Copyright (C) 2000 Bjorn Reese and Daniel Stenberg.

Copyright (C) 2000 Gary Pennington and Daniel Veillard.

Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>

Copyright (C) 2000, 2012 Bjorn Reese and Daniel Veillard.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, subli-
cense, and/or sell copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

165© Copyright Merge Healthcare Solutions Inc. 2023

Appendix E. JSON License

The Merge DICOM Toolkit supports DICOM to JSON and JSON to DICOM conversions through the
use of a public domain library: jansson. Usage of the jansson library is governed by the MIT License
and Copyright notice. The original content of the MIT License and Copyright notice as shown below:

The MIT License (MIT)

Copyright (C) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, subli-
cense, and/or sell copies of the Software, and to permit persons to whom the Software is fur-
nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

	C/C++ User’s Manual
	Contents
	Chapter 1. Overview
	1.1. The DICOM Standard
	1.2. The Merge DICOM Toolkit
	1.3. Development Platform Requirements
	1.4. Library Structure
	1.5. Documentation Roadmap
	1.6. Conventions

	Chapter 2. Understanding DICOM
	2.1. General Concepts
	2.2. Networking
	2.3. Messages
	2.4. Media Interchange
	2.5. Conformance

	Chapter 3. Using Merge DICOM Toolkit
	3.1. Configuration
	3.2. Message Logging
	3.3. Utility Programs

	Chapter 4. Developing DICOM Applications
	4.1. Library Initialization
	4.2. Statically Linked Configuration
	4.3. Registering Your Application
	4.4. Association Management (Network Only)
	4.5. Negotiated Transfer Syntaxes (Network Only)
	4.6. Dynamic Service Lists
	4.7. Message Objects
	4.8. Message Exchange (Network Only)
	4.9. Using Compression/Decompression Callback Functions
	4.10. Using Callback Functions
	4.11. Sequences of Items
	4.12. DICOM Files
	4.13. DICOMDIR
	4.14. Private Attributes
	4.15. Multi-threading Support
	4.16. Memory Management
	4.17. DICOM Structured Reporting
	4.18. Unicode Support

	Chapter 5. Deploying Applications
	5.1. Merge DICOM Toolkit Required Files
	5.2. Configuration Options
	5.3. UN VR

	Appendix A. Frequently Asked Questions
	Appendix B. Unique Identifiers (UIDs)
	B.1. Summary of UID Composition
	B.2. Sample UID Format
	B.3. Obtaining a UID

	Appendix C. XML and JSON Structures
	Appendix D. XML License
	Appendix E. JSON License

